
Extending Graph Rules with Oracles
Xueli Liu

Tianjin University, China
xueli@tju.edu.cn

Bowen Dong
Tianjin University, China
1020201107@tju.edu.cn

Wenzhi Fu
University of Edinburgh, UK

wenzhi.fu@ed.ac.uk

Nannan Wu
Tianjin University, China
nannan.wu@tju.edu.cn

Xin Wang
Tianjin University, China

wangx@tju.edu.cn

Wenjun Wang*
Tianjin University, China

wjwang@tju.edu.cn

ABSTRACT
This paper proposes a class of graph rules for deducing associations
between entities, referred to as Graph Rules with Oracles and de-
noted by GROs. As opposed to previous graph rules, GROs support
oracle functions to import (a) external knowledge, and (b) internal
computations such as aggregate operators and machine learning
predicates, and so on. Moreover, the semantics of GROs are defined
in terms of pivoted dual simulation, in contrast to the subgraph
isomorphism. We show how GROs can be used to predict links
and catch anomalies, among other things. We formalize the asso-
ciation deduction problem with GROs in terms of the chase, and
prove their Church-Rosser property. We show that both the deduc-
tion and incremental deduction problems with GROs are in PTIME,
as opposed to the intractability of their counterparts with prior
graph rules. We also provide sequential and parallel algorithms for
association deduction and incremental deduction. Using real-life
and synthetic graphs, we experimentally verify the effectiveness,
scalability, and efficiency of the algorithms.

PVLDB Reference Format:
Xueli Liu, Bowen Dong, Wenzhi Fu, Nannan Wu, Xin Wang, and Wenjun
Wang*. Extending Graph Rules with Oracles . PVLDB, 14(1): XXX-XXX,
2020.
doi:XX.XX/XXX.XX

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/simplesunnylife/GROs.

1 INTRODUCTION
Rules for property graphs have gained attention in recent years,
proving effective in various areas, including entity integrity, recom-
mendation, query optimization, and consistency checks [6, 10, 13,
14, 19]. As opposed to relational databases, real-life graphs often
do not come with a schema. To define rules for such graphs 𝐺 , two
essential components are needed. Firstly, a topological constraint
𝑄 is utilized to identify associated entities within𝐺 , thereby spec-
ifying the scope of the rule application. Secondly, a dependency
𝑋 → 𝑌 is established to capture the relationships between the

* corresponding author
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 14, No. 1 ISSN 2150-8097.
doi:XX.XX/XXX.XX

attributes of the identified entities. By incorporating these com-
ponents, researchers can define powerful rules that facilitate the
comprehensive analysis and inference on complex graph structures.

A range of rules with varying expressive power have been de-
veloped by combining the topological constraint 𝑄 with different
syntax of dependency 𝑋 → 𝑌 . Graph Functional Dependencies
(GFDs)[6] extend conditional functional dependencies (CFDs)[9]
to graphs, supporting bindings of semantically related constants
with constant literals represented as 𝑥 .𝐴 = 𝑐 , which associates a
constant 𝑐 with the attribute 𝐴 of an entity 𝑥 . After GFDs, several
extensions have been studied. For instance,NGFDs [13] supporting
linear arithmetic expressions and built-in comparison predicates,
GEDs [14] supporting keys in graphs, and GARs [10] unifying ML
classification predicates.

However, there are two issues with these graph rules. First, there
are still some important semantic associations that are commonly
found in applications but cannot be specified. For example, none
of the prior rules is capable of expressing aggregation and regular
expressions, which are crucial for tasks such as fraud detection,
anomaly detection, and data validation. Second, the semantics of
these rules is interpreted in terms of subgraph isomorphism or
homomorphism. To apply these rules in a graph 𝐺 , all subgraphs
of 𝐺 that is isomorphic (homomorphism) to 𝑄 must be computed,
and then 𝑋 → 𝑌 can be applied. This process is computationally
intractable (cf. [26]), which hampers the applicability of these rules.

To overcome these limitations, there is a need to develop new
approaches that can express more semantic associations within the
rules. This will enhance their capabilities in existing applications
and enable their application in crucial areas such as real-time risk
detection and anomaly detection. Additionally, alternative tech-
niques should be explored to address the computational challenges
associated with the application of these rules, ensuring their practi-
cality and scalability in real-world scenarios.

Example 1: Consider the following real-life examples.
(1) Collaboration recommendation. A practical rule employs an
anomaly subgraph detection algorithm [4] to identify up-curve
research teams and their core members, using external data sources
that are not included in the collaboration recommender system. If
researcher 𝑥 and 𝑦 are in the same field and 𝑦 is a core member
of a up-curve team, then 𝑦 is recommended 𝑥 for collaboration.
This rule can facilitate the formation of more productive research
partnerships, which requires external data access and complex com-
putations, and cannot be achieved using existing graph rules.
(2) Fraud detection. A money laundering detection rule states that
if individual 𝑥 receives funds from others and transfers out a signif-

https://doi.org/XX.XX/XXX.XX
https://github.com/simplesunnylife/GROs
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/XX.XX/XXX.XX

icant portion, such as 70% of the received funds, it raises suspicion
of potential involvement in money laundering activities. This rule
enhances the ability to identify and prevent illicit financial activi-
ties. However, expressing this rule requires the use of aggregation
operators, like sum, which are not supported by existing rules.
(3) Art exhibitions recommendation. An artwork exhibition gallery
recommendation rule states that if an artist 𝑥 creates a work 𝑦, and
gallery 𝑧’s reputation aligns with 𝑥 ’s influence, then 𝑦 should be
recommended for exhibition at 𝑧. This rule enhances exhibition
success and advances artists’ careers. However, it depends on statis-
tical methods from [25] to quantify reputation and influence, which
existing rules do not support.
(4) Event detection. An anomaly event detection rule predicts that
if more than 3 people post tweets in the same location 𝑧 and dis-
cuss the same event 𝑥 , then 𝑥 is occurring at location 𝑧. This ad-
vancement improves real-time event detection for better crisis man-
agement and situational awareness. However, this rule cannot be
expressed by existing rules since it requires aggregation operators.
(5) Crises prediction. The event crisis prediction rule identifies a new
event 𝑧 as a potential trigger for a media crisis if it is similar to a
previous crisis event 𝑧′ and have over 10,000 followers. This rule
enables PR agencies to proactively anticipate and manage potential
crises. Although the similarity between events can be expressed
using anMLmodel withinGARs, aggregating over 10,000 followers
cannot be done with existing graph rules. 2

The examples raise several questions. Is it possible to have a
class of graph rules to specify the above semantic associations that
the previous rules cannot express? Can we reduce the complexity
at the same time and make association deduction tractable? Can
we parallelize association deduction to scale with large graphs?

Contributions. In response to practical need, this paper makes an
effort to tackle these issues, all in the affirmative.
(1) A new class of graph rules (Section 3). We propose a class of
rules, referred to as graph rules with oracle and denoted by GROs
(Section 3). GROs also have the form of 𝑄 (𝑋 → 𝑌). However,
unlike existing graph rules, GROs support oracle functions that
import (a) external knowledge about the properties and features of
nodes and edges; and (b) internal computations such as aggregate
predicates including count, sum and avg. Like GARs [10], GROs
can also embed machine learning (ML) models as predicates. Fur-
thermore, the semantics of GROs is defined in terms of a revised
notion of dual simulation [33], which is in polynomial time (PTIME)
in contrast to the intractability (NP-Complete) of previous graph
rules. These depart from GFDs, GEDs and GARs.

We show that GROs can be readily used for associations de-
duction [10], graph data cleaning [15], fraud detection [39] and
annotation analysis [27], among other things. In this paper, we
focus on the (incremental) deduction of associations with GROs.
(2) Practical applications. (Section 4) We formalize the association
deduction problem by extending the chase [38] with a set Σ of
GROs (Section 4). We show that the deduction has the Church-
Rosser property, i.e., the chase converges at the same answer no
matter what rules in Σ are used in what order theGROs are applied.
Better yet, we prove that the association deduction problem is in
PTIME, as opposed to the intractability of association deduction

with GARs [10].
(3) A parallel solution (Section 5). To scale with large graphs, we
parallelize SDeduc and develop a parallel association deduction
algorithm PDeduce (Section 5). We show that PDeduce is parallelly
scalable relative to SDeduc, i.e., it guarantees to reduce the parallel
runtime when more processors are used. We propose a workload
balance strategy to split skewed work units and dynamically balance
workload, based on necessary affected area and bounded affected
area, to balance computation and minimize communication across
different processors.

(4) Incremental deduction (Section 6). We provide a parallel incre-
mental algorithm PIncDeduce in response to graph update (Sec-
tion 6). Real-life graphs are frequently updated, and it is costly to
re-deduce associations starting from scratch when graphs change.
In light of this, we develop the algorithm PIncDeduce to incremen-
tally compute changes to associations, minimizing unnecessary
recomputation. We show that the incremental deduction algorithm
PIncDeduce is also parallel scalable.

(5) Experimental study (Section 7). Using real-life and synthetic
graphs, we empirically verify the effectiveness, scalability, and
efficiency of our (incremental) deduction methods. We find the
following. (1) GROs are effective in association deduction by in-
corporating oracles and adopting revised simulation semantic. Our
method has precision above 97% on average, and its recall is above
72.5%, which outperforms the SOTA method with GARs [10] by
23.6%. (2) Our parallel deduction method is efficient and parallel
scalable: on average, it is 5.0 times faster than PGAR on graphs of
6.2 million nodes and 33.4 million edges with 20 processors, and
it is 4.2 times faster when the number of processors used is varied
from 4 to 20. (3) Our incremental deduction algorithm PIncDeduce
performs better than its batch counterpart even when updates Δ𝐺
are up to 25% of𝐺 , 2.1 times faster when |Δ𝐺 | = 10%|𝐺 | on average.

2 PRELIMINARIES
We first review the basic notation. Assume that alphabets Γ, Θ, and
𝑈 denote labels, attributes, and constant values, respectively.

Graphs. We consider directed graphs 𝐺 = (𝑉 , 𝐸, 𝐿, 𝐹𝐴), where (1) 𝑉
is a finite set of nodes; (2) 𝐸 ⊆ 𝑉 ×𝑉 is a set of edges, in which (𝑣, 𝑣 ′)
denotes an edge from node 𝑣 to 𝑣 ′; (3) each node 𝑣 in 𝑉 (resp. edge
𝑒 in 𝐸) carries label 𝐿(𝑣) (resp. 𝐿(𝑒)) in Γ, and (4) for each node 𝑣 ,
𝐹𝐴 (𝑣) is a tuple (𝐴1 = 𝑎1, . . . , 𝐴𝑛 = 𝑎𝑛) such that 𝐴𝑖 ≠ 𝐴 𝑗 if 𝑖 ≠ 𝑗 ,
where 𝑎𝑖 is a constant in𝑈 , and 𝐴𝑖 is an attribute of 𝑣 drawn from
Θ, written as 𝑣 .𝐴𝑖 = 𝑎𝑖 , carrying the content of 𝑣 such as keywords
and blogs found in social networks.

We use two notions of subgraphs. A graph 𝐺 ′ = (𝑉 ′, 𝐸′, 𝐿′, 𝐹 ′
𝐴
)

is a subgraph of 𝐺 = (𝑉 , 𝐸, 𝐿, 𝐹𝐴), denoted by 𝐺 ′ ⊆ 𝐺 , if 𝑉 ′ ⊆ 𝑉 ,
𝐸′ ⊆ 𝐸, and for each node 𝑣 ∈ 𝑉 ′, 𝐿′ (𝑣) = 𝐿(𝑣) and 𝐹 ′

𝐴
(𝑣) = 𝐹𝐴 (𝑣);

similarly for each edge 𝑒 ∈ 𝐸′, 𝐿′ (𝑒) = 𝐿(𝑒).
A subgraph 𝐺 ′ is induced by a set 𝑉 ′ of nodes if 𝑉 ′ ⊆ 𝑉 and 𝐸′

consists of all edges in 𝐸 whose endpoints are both in 𝑉 ′.

Patterns. A graph pattern is defined as a DAG (Directed Acyclic
Graph) 𝑄 [𝑥] = (𝑉𝑄 , 𝐸𝑄 , 𝐿𝑄), where (1) 𝑉𝑄 (respectively, 𝐸𝑄) is a
finite set of pattern nodes(respectively,edges); (2) 𝐿𝑄 is a function
with range in Γ that assigns a node label 𝐿𝑄 (𝑢) and an edge label
𝐿𝑄 (𝑒) for each 𝑢 ∈ 𝑉𝑄 and 𝑒 ∈ 𝐸𝑄 ; and (3) 𝑥 is a list of distinct

2

G3

Q3

Olafur
Eliasson

The weather
project

Tate modern
gallery

y z
create

x0person artwork gallery

0

post
tell

located

x

Q4

person twetter

address

event

y

z1

x0

BlizzardBeijing
G4

John

tw1 tw2 tw3

Bob Joe Sue

tw4

Q2

Bob Ann

acc1

acc2

acc3

transf1

transf2transf3

transf4

G1

Q1

in

z team focus w
field

interest

researcher
 x0 y

in

 BNU team focus

complex
science

interest

Bob Philip
acc1 acc2

acc3

wb1 wb2

wb3 wb4

wb5

Ningbo-Wenzhou
bullet train accident

Beijing -Shanghai high
speed railway accident

G5

Q5

post

topic

account
 x y blog

z2z1
event

(pivot)

(pivot) (pivot)G2

owns
y1x1

y2

person account

account

z1

x0
from

to

transfer

owns

z2y3
transferaccount

Figure 1: Associations in real-life graphs
variables to represent a subset of nodes in 𝑉𝑄 , referred to as the
pivots of 𝑄 , for query interest. We limit the number of pivots to
a maximum of 2, as we are primarily concerned with either the
properties of a single entity or the associations between two entities.
We allow wildcard “_′′ as a special label for nodes or edges in 𝑄 .

For each 𝑣 in 𝐺 or 𝑄 , we use pre(𝑣) to denote the incoming
neighbors of 𝑣 , and post(𝑣) as the outgoing neighbors of 𝑣 .

For convenience, we do not differentiate between 𝑄 and 𝑄 [𝑥]
when the focus is not on pivots.

Remarks.We define the graph pattern as a DAG since: (a) DAGs are
well-suited for modeling many real-world systems. (b) DAGs strike
a balance between expressive power and computational complexity.
Unlike cyclic graphs, DAGs prevent the occurrence of long loops
during graph traversal, which can cause challenges in applying
parallel algorithms effectively.
Example 2: Five graph patterns are shown in Fig. 1. Here𝑄1 depicts
that a person 𝑥0 and a team 𝑧 have interests in a research field, and
another person 𝑦 is a member of team 𝑧. The pivot 𝑥 of 𝑄1 is 𝑥 , it
is mapped to Bob and Phillip in 𝐺1 in Fig. 1. Similarly, 𝑄2–𝑄4 can
be interpreted by referencing their counterparts in Fig. 1. 2

Dual simulation [34]. Graph 𝐺 matches pattern 𝑄 via dual simula-
tion, if there exists a binary relation 𝑆 ⊆ 𝑉𝑄 ×𝑉 such that (1) for
each node 𝑢 ∈ 𝑉𝑄 , there exists a node 𝑣 ∈ 𝑉 such that (𝑢, 𝑣) ∈ 𝑆 ,
and (2) for each pair (𝑢, 𝑣) ∈ 𝑆 , (a) 𝐿𝑄 (𝑢) = 𝐿(𝑣), (b) for each edge
(𝑢,𝑢1) ∈ 𝐸𝑄 , there exists an edge (𝑣, 𝑣1) in𝐺 with (𝑢1, 𝑣1) ∈ 𝑆 , and
(c) for each edge (𝑢2, 𝑢) ∈ 𝐸𝑄 , there exists an edge (𝑣2, 𝑣) in𝐺 with
(𝑢2, 𝑣2) ∈ 𝑆 ; Here 𝐿𝑄 (𝑢) = 𝐿(𝑣) holds if 𝐿𝑄 (𝑢) is ‘_’, i.e., wildcard
matches any label to indicate generic entities.

A match 𝑆𝑀 of 𝑄 in 𝐺 is maximum if for any match 𝑆 ∈ 𝐺 ,
𝑆 ⊆ 𝑆𝑀 . While there exist multiple matches in a graph 𝐺 for a
pattern 𝑄 , there exists a unique maximum match 𝑆𝑀 .

We also denote the match 𝑆 as consisting of 𝑆 (𝑥) for all 𝑥 ∈ 𝑉𝑄 .
Intuitively,𝑉𝑄 is a list of entities to be identified by𝑄 , and 𝑆 is such
an instantiation in 𝐺 .

Given 𝑆𝑀 of 𝑄 , its graph, denoted as 𝐺𝑆 , is the subgraph 𝐺 ′

induced by nodes in 𝑆 but removing (𝑢′, 𝑣 ′) from 𝐺 ′ for 𝑢′ ∈ 𝑆 (𝑢),
𝑣 ′ ∈ 𝑆 (𝑣) and (𝑢, 𝑣) is not in 𝑄 .

Pivoted match. Given a graph𝐺 and a pattern𝑄 [𝑥], a pivoted match
of 𝑄 [𝑥] at nodes𝑊 in 𝐺 is a binary relation, denoted as 𝑆𝑊 , such
that (a) 𝑆𝑊 is a dual simulation match of 𝑄 , and (b) |𝑥 |=|𝑊 |, and
for each 𝑥𝑖 ∈ 𝑥 and𝑤𝑖 ∈𝑊 , 𝑆𝑊 (𝑥𝑖) = 𝑤𝑖 .

We say a pivoted match 𝑆𝑊 is maximum if there exists no subset
𝑆 ′
𝑊

such that 𝑆 ′
𝑊

is a pivoted match of 𝑄 and 𝑆𝑊 ⊆ 𝑆 ′
𝑊
.

Example 3: For instance, consider pattern𝑄2 and graph𝐺2 in Fig. 1.
For pivot node 𝑥0, there are two candidates Ann and Bob in𝐺2. The
pivoted match 𝑆𝐴𝑛𝑛 of 𝑄2 at Ann is as follows. 𝑆𝐴𝑛𝑛 (𝑥0) = {Ann};
𝑆𝐴𝑛𝑛 (𝑥1) = {Bob}; 𝑆𝐴𝑛𝑛 (𝑦1) = {acc1}; 𝑆𝐴𝑛𝑛 (𝑦2) = {acc2};𝑆𝐴𝑛𝑛 (𝑦3) =
{acc1, acc3}; 𝑆𝐴𝑛𝑛 (𝑧1) = {transf1}, 𝑆𝐴𝑛𝑛 (𝑧2) = {transf2, transf3}. The
pivoted match 𝑆𝐵𝑜𝑏 can be computed in a similar manner. 2

3 GRAPH RULES WITH ORACLES
We next define GROs. We start with oracles.

Oracles. In computational complexity theory, an oracle is an abstract
machine developed for a decision or a function problem. Here
we simply use oracles to import external knowledge and internal
computations. More specifically, given a graph pattern 𝑄 [𝑥], an
oracle for𝑄 is a boolean function. It is either a unary function 𝑓 (𝑥),
or a binary function 𝑓 (𝑥,𝑦), where 𝑥 and 𝑦 are nodes in 𝑄 .

It’s important to note that our use of the term “function” here
differs from the traditional mathematical definition. We define an
oracle in a broader sense, allowing for various processes such as
non-deterministic processes, human expertise, or pre-computed
algorithms. This expanded definition provides flexibility and inclu-
siveness, enabling the incorporation of different sources of infor-
mation or computation beyond what is typically considered within
the realm of mathematical functions.

Intuitively, an oracle 𝑓 (𝑥) may decide whether a node (entity) 𝑥
has a certain property, 𝑓 (𝑥,𝑦) may decide how nodes 𝑥 and 𝑦 are
“associated”. It can be treated as a new attribute 𝑓 of node𝑥 or an new
edge (𝑥, 𝑓 ,𝑦). It may operate on data that is not in an input graph
𝐺 such as a knowledge base, i.e., it imports external knowledge
beyond the input graph. It also supports internal computations
such as (a) aggregate predicates involving count, sum and avg, and
(b) ML predicatesM(𝑥,𝑦) and so on. These internal functions are
applied to matches of a graph pattern 𝑄 in a graph 𝐺 , rather than
to resort to external knowledge.

In the sequel, we refer to internal functions as internal oracles,
and oracles that are computed externally as external oracles. To
simplify the discussion, we use 𝑓 (𝑥) and 𝑓 (𝑥,𝑦) to range over
oracles, internal or external, when it is clear from the context.

Predicates. A predicate 𝑝 of𝑄 [𝑥] is one of the following: for 𝑥,𝑦 ∈ 𝑄 ,
◦ unary oracle predicate 𝑓 (𝑥);
◦ binary oracle predicate 𝑓 (𝑥,𝑦);
◦ constant attribute predicate 𝑥 .𝐴 = 𝑐;
◦ variable attribute predicate 𝑥 .𝐴 = 𝑦.𝐵;

where 𝑓 (𝑥), 𝑓 (𝑥,𝑦) are oracles, 𝑐 is a constant, and 𝐴 and 𝐵 are
attributes of 𝑥 and 𝑦, respectively.

3

GROs. A graph rule with oracles (GRO) 𝜑 is defined as

𝑄 [𝑥] (𝑋 → 𝑌),
where 𝑄 [𝑥] is a graph pattern, and 𝑋 and 𝑌 are (possibly empty)
conjunctions of predicates of 𝑄 [𝑥]. We refer to 𝑄 [𝑥] and 𝑋 → 𝑌

as the pattern and dependency of 𝜑 , respectively.
GRO is a combination of topological constraint and semantic

dependency. The pattern 𝑄 identifies entities in a graph, and the
dependency 𝑋 → 𝑌 is applied to the entities.

Remarks. The following is a partial list of internal oracles. Assume
𝑥,𝑦 ∈ 𝑄 [𝑥],

(a) edge existent predicate 𝜄 (𝑥,𝑦), indicating the existence of
an edge from 𝑥 to 𝑦 labeled 𝜄 ∈ Γ.

(b) aggregate oracle 𝑓 (𝑥), where the computation of 𝑓 (𝑥) in-
volves aggregation operators, such as count, avg, sum, min
and max.

(c) a well trained ML model 𝑓 (𝑥,𝑦) =M(𝑥, 𝜏,𝑦) for link pre-
diction to predict whether edge (𝑥, 𝜏,𝑦) exists;

(d) similarity predicates 𝑓 (𝑥,𝑦) = sim(𝑥,𝑦), which returns true
if 𝑥 and 𝑦 are similar;

To strike a balance of complexity and expressiveness for GROs,
oracles are defined on the nodes of patterns (graphs). While their
computation may involve the attributes of the nodes, they do not
determine the associations between attribute values. For example,
oracles cannot support polynomial arithmetic expressions related
with node attributes.

We impose the restriction that internal oracles are computable
in PTIME. But external oracles can be of any computational model,
with a focus only on their results. This allows the sharing of knowl-
edge and computed results across different applications. Through
entity alignment, these oracles can be connected to our entities and
treated as attributes or edges associated with aligned entities.

Example 4: One can use the GROs below to deduce associations
described in Example 1, using patterns 𝑄1-𝑄5 of Fig. 1.
(1) 𝜑1 = 𝑄1 [𝑥0] (Up_curve(𝑧) ∧ Core(y, z) → recom(𝑦, 𝑥0)),
Here Up_curve(𝑧) and Core(y, z) are external oracles, for decid-
ing whether a team is on its up-curve and whether researcher 𝑦
is a core member in team 𝑧, respectively. The GRO says that if a
person 𝑥0 and a team 𝑧 are in the same research field𝑤 , team 𝑧 is
on its up-curve, and if 𝑦 is a core member of 𝑧, then recommend 𝑦
to 𝑥0 for collaboration.

(2) 𝜑2 = 𝑄2 (𝑥0) (Circle(x0) → Mlauder(𝑥0)), where Circle(x0) is
an internal oracle involves aggregate operator sum, computed by
sum(z1 .amount) ≥ 0.7 ∗ sum(z2 .amount);Mlauder(𝑥) is an inter-
nal oracle means person 𝑥 involves in money laundering. It states
that if 𝑥 receives funds from others and transfers out more than
70%, then 𝑥0 is involved in money laundering.

(3) 𝜑3 = 𝑄3 [𝑥0](consistent(𝑥0, 𝑧) → (𝑦, exhibit, 𝑧), where
consistent (𝑥0, 𝑧) is external oracle returns that whether the in-
fluence of 𝑥0 and the reputation of 𝑧 are consistent. It states that
if the influence of an artist 𝑥0 is consistent enough with a library
𝑧’s reputation, then the artwork 𝑦 created by 𝑥0 is recommended
to library 𝑧 on exhibition.

(4) 𝜑4 = 𝑄4 [𝑥0] (Majority(𝑥0) → (𝑥0, occur, 𝑧1)). Here
Majority(x0) is an oracle that computed by count(𝑥) ≥ 3, and

val is an attribute of 𝑧1. It says that if there are more than 3 people
tweeting the same event 𝑥0 in the same place 𝑧1, then the event is
predicted to happen in place 𝑧1.

(5) 𝜑5 = 𝑄5 [𝑧1, 𝑧2] (Crisis(z2) ∧ follows(z1) ∧ Similar(z1, z2) →
Crisis(z1)), Here follows(z2) is computed by count(𝑥) ≥ 10000,
and Similar(z1, z2) means event 𝑧1 and 𝑧2 are similar. It states that
if an event 𝑧1 is similar with a crisis event 𝑧2 and 𝑧1 has been
followed by a majority population, then 𝑧1 is reported as a media
crisis event. 2

Semantics. To interpret GRO 𝜑 = 𝑄 [𝑥] (𝑋 → 𝑌), we use the
following notations. Denote by 𝑆𝑊 a maximum pivoted match of
𝑄 [𝑥] in a graph 𝐺 at a vector𝑊 , and 𝑝 a predicate of 𝑋 and 𝑌 .

We say that 𝑆𝑊 satisfies a predicate 𝑝 , denoted by 𝑆𝑊 |= 𝑝 , the
following condition is satisfied:

(a) for each predicate 𝑥 .𝐴 = 𝑐 in 𝑋 , and for each 𝑥 ′ ∈ 𝑆 ′
𝑊
(𝑥),

𝑥 ′ .𝐴 = 𝑐;
(b) for each predicate 𝑥 .𝐴 = 𝑦.𝐵 in 𝑋 , and for each 𝑥 ′ ∈ 𝑆 ′

𝑊
(𝑥)

(𝑦′ ∈ 𝑆 ′
𝑊
(𝑦)), there exists 𝑦′ ∈ 𝑆 ′

𝑊
(𝑦)(𝑥 ′ ∈ 𝑆 ′

𝑊
(𝑥)) such

that 𝑥 ′ .𝐴 = 𝑦′ .𝐵 is true.
(c) for each predicate 𝑓 (𝑥) in 𝑋 , and for each 𝑥 ′ ∈ 𝑆 ′

𝑊
(𝑥),

𝑓 (𝑥 ′) is true; and
(d) for each predicate 𝑓 (𝑥,𝑦) in 𝑋 , and for each 𝑥 ′ ∈ 𝑆 ′

𝑊
(𝑥)

(𝑦′ ∈ 𝑆 ′
𝑊
(𝑦)), there exists 𝑦′ ∈ 𝑆 ′

𝑊
(𝑦)(𝑥 ′ ∈ 𝑆 ′

𝑊
(𝑥)) such

that 𝑓 (𝑥 ′, 𝑦′) is true.
For the set 𝑋 (𝑌) of predicates, we write 𝑆𝑊 |= 𝑋 (𝑌) if match

𝑆𝑊 satisfies all the predicates in 𝑋 (𝑌).
If 𝑋 (resp. 𝑌) is ∅ (i.e., true), then 𝑆𝑊 |= 𝑋 (resp. 𝑆𝑊 |= 𝑌) is

trivially true.
We write 𝑆𝑊 |=𝑋→𝑌 if 𝑆𝑊 |=𝑋 implies 𝑆𝑊 |=𝑌 .
A graph 𝐺 satisfies GRO 𝜑 , denoted by 𝐺 |= 𝜑 , if for all matches

𝑆𝑊 of 𝑄 in 𝐺 , 𝑆𝑊 |= 𝑋 → 𝑌 . Otherwise we say 𝑆𝑊 ̸ |= 𝑋 → 𝑌 . We
say that 𝐺 satisfies a set Σ of GROs, denoted by 𝐺 |= Σ, if for all
𝜑 ∈ Σ, 𝐺 |= 𝜑 , i.e., 𝐺 satisfies every GRO in Σ.

Remarks. In contrast to isomorphism matching based on function,
pivoted match is based on sets. When interpreting GROs, it is
necessary to consider the association between two sets.

If “existent” semantic was adopted, it would be too relaxed and
result in a significant number of false positive associations when
applying GROs. Conversely, directly applying the “all” semantic
would be overly strict and result in a majority of false negative
associations. To strike a balance, we utilize a variant of the “all”
semantic: it expresses the “all” semantic for unary predicates in 𝑋

and 𝑌 , while for binary predicates, it implies an “existent” semantic.

Example 5: Consider graph 𝐺4 of Fig. 1 and GRO 𝜑4 in Exam-
ple 4. 𝐺4 ̸ |= 𝜑4, since there exists pivoted match 𝑆Blizzard such that
𝑆Blizzard |= 𝑋4, but there exists no edge (Blizzard, occur, Beijing)
in 𝐺4. Hence 𝑆Blizzard ̸ |= 𝑋2 → 𝑌2, i.e., 𝑆Blizzard witnesses 𝐺2 ̸ |= 𝜑2.
Similarly, 𝐺𝑖 ̸ |= 𝜑𝑖 for other 𝑖 ∈ [1, 5]. 2

4 DEDUCING ASSOCIATIONS
One of the applications of GROs is deducing associations. GROs
can deduce associations listed as follows: (a) associations between
entities deduced by 𝜄 (𝑥,𝑦) and 𝑓 (𝑥,𝑦); (b) associations of attribute
values deduced by 𝑥 .𝐴 = 𝑐 and 𝑥 .𝐴 = 𝑦.𝐵; (c) properties of 𝑥

4

deduced by 𝑓 (𝑥). Unlike GARs, GROs can deduce associations
between entities described by oracles and the properties of entities.

We first revise the chase [38] for GROs, and show that chasing
with GROs has the Church-Rosser property. Based on these, we
will study a practical sequential algorithm to deduce associations.

4.1 Chasing with GROs
Consider a graph 𝐺 = (𝑉 , 𝐸, 𝐿, 𝐹𝐴), a set Σ of GROs, a set 𝐹 of
oracles defined on nodes 𝑥 and 𝑦, and a set 𝐹𝑣 to store the result
returned by oracles in 𝐹 . We study the chase of 𝐺 by Σ.
Association relation.We define the chase as a sequence of associ-
ation relations R, and R includes (a) equivalence relations Eq, as
described in [14], for each attribute 𝑥 .𝐴 of 𝑥 , its equivalence class
[𝑥 .𝐴]Eq is a set of attributes 𝑦.𝐵 and constants 𝑐 ,if 𝑥 .𝐴 = 𝑦.𝐵 and
𝑥 .𝐴 = 𝑐 . (b) a set 𝐸′ of edges, updated by literal 𝜄 (𝑥,𝑦), and (c) a
boolean set of oracles 𝐹 , updated by 𝑓 (𝑥) and 𝑓 (𝑥,𝑦).
Chasing.We starts with R0, an initial association relation initial-
ized as empty. Then each chase step 𝑖 extends R𝑖−1 to get R𝑖 by
applying a GRO.

A chase step of 𝐺 by Σ is defined as: R ⇒(𝜑,𝑆𝑊) R′, where
𝜑 = 𝑄 (𝑥) (𝑋 → 𝑌) is a GRO in Σ and 𝑆𝑊 is the pivoted simulation
of 𝑄 pivoted at𝑊 such that 𝑆𝑊 |= 𝑋 . R′ extends R by enforcing
one literal 𝑙 ∈ 𝑌 by using 𝑆𝑊 .

More specifically, based on 𝑙 , R′ is defined as follows.
(1) If 𝑙 is 𝑥 .𝐴 = 𝑐 , then for each 𝑥 ′ ∈ 𝑆𝑊 (𝑥), R′ extends R by

(a) including a new equivalence class [𝑥 ′ .𝐴]Eq if 𝑥 ′ .𝐴 is not
in Eq, and (b) adding 𝑐 to [𝑥 ′ .𝐴]Eq;

(2) If 𝑙 is 𝑥 .𝐴 = 𝑦.𝐵, then for each 𝑥 ′ ∈ 𝑆𝑊 (𝑥) and 𝑦′ ∈ 𝑆𝑊 (𝑦),
R′ extends R by adding (a) [𝑥 ′ .𝐴]Eq if 𝑥 ′ .𝐴 is not in Eq,
and (b) 𝑦′ .𝐵 to [𝑥 ′ .𝐴]Eq;

(3) If 𝑙 is 𝑓 (𝑥), then for each 𝑥 ′ ∈ 𝑆𝑊 (𝑥), R′ extends R by
adding 𝑓 (𝑥 ′) to 𝐹 ;

(4) If 𝑙 is 𝑓 (𝑥,𝑦), then for each 𝑥 ′ ∈ 𝑆𝑊 (𝑥) and 𝑦′ ∈ 𝑆𝑊 (𝑦),
R′ extends R by adding 𝑓 (𝑥 ′, 𝑦′) to 𝐹 ;

Consistency. Conflicts may emerge when enforcing GROs. We say
that R is inconsistent if when it enforces predicate 𝑝 , either (a) 𝑝 is
𝑥 .𝐴 = 𝑐 , but there exists 𝑥 .𝐴 = 𝑑 ; or (b) 𝑝 is 𝑥 .𝐴 = 𝑦.𝐵, but there
exists 𝑥 .𝐴 = 𝑐 and 𝑦.𝐵 = 𝑑 , where 𝑐 and 𝑑 are constants and 𝑐 ≠ 𝑑 .

The step is valid if Eq is consistent, note that (a) edge literals do
not incur inconsistencies as multiple edges can co-exist between
a pair of nodes, and (b) 𝐹 will not conflict since 𝑌 do not contain
negative predicates.

Chasing sequences. A chasing sequence 𝜌 of𝐺 by Σ is (R0, . . . , R𝑘)
where for all 𝑖 ∈ [0, 𝑘 − 1], there exist a GRO 𝜑 = 𝑄 [𝑥] (𝑋 → 𝑌) in
Σ and the pivoted match 𝑆𝑊 of graph pattern 𝑄 pivoted at𝑊 in 𝐺
such as R𝑖 ⇒ R𝑖+1 is a valid chase step.

The sequence is terminal if there exist noGROs 𝜑 ∈ Σ and match
𝑆𝑊 of pattern 𝑄 of 𝜑 in 𝐺 pivoted at𝑊 , and association relation
R𝑘+1 such that R𝑘 ⇒ R𝑘+1 is a valid step. More specifically, it
terminates in one of the following two cases.

(a) R𝑘 cannot be expanded and R𝑖 is consistent (𝑖∈[0, 𝑘]); if so, the
chasing sequence is valid and its result is R𝑘\R0.

(b) At some step 𝑖 , R𝑖 is inconsistent; if so, the chasing sequence is
invalid, and the result is undefined ⊥.

Example 6: Consider the graph 𝐺4 shown in Fig. 1. Assume
that Σ consists of only one GRO 𝜑4 in Example 4. From
R0 = {[Blizzard]Eq0 = {Blizzard}; [Beijing]Eq0 = {Beijing};
[tw𝑖]Eq0 = {tw𝑖 } for 𝑖 ∈ [1, 4]; [Bob]Eq0 = {Bob}; [Joe]Eq0 =

{Joe}; [Sue]Eq0 = {Sue}; [John]Eq0 = {John}}, we have the chase
step: R0 ⇒(𝜑2,𝑆Blizzard) R1, match 𝑆Blizzard is given in Example 5;
and R1 extends R0 with edge (Blizzard, occurs, Beijing). 2

4.2 The Church Rosser Property
A major concern is whether the chase always terminates with
the same result. Following [2], we say that chasing with GROs is
Church-Rosser if for all graphs𝐺 and all sets Σ of GROs, all chasing
sequences of 𝐺 by Σ are terminal and converge at the same result,
regardless of what GROs and in what order the GROs are applied.

Theorem 1: Chasing with GROs is Church-Rosser. 2

Proof sketch: The proof consists of two steps.

(1) The size of chase relation R𝑖 is bounded by |𝐺 | |Σ|. It is because
there exists at most |𝐺 | |Σ| equivalence classes in Eq𝑖 , edges in 𝐸′

𝑖
and oracles in 𝐹 . It is easily verify that GROs in Σ check at most |Σ|
oracles for each node and edges; and between each pair of nodes in
𝐺 , the labels of new edges are constrained by GROs in Σ, and then
at most |Σ| edges can be deduced.

(2) All chasing sequences terminate at the same result. If there exist
two terminal sequences having different results, then one of them
is not terminal, a contradiction. Since 𝐺 is not changed during the
chase, the oracles introduced by Σ will not affect the Church-Rosser
property of the chase. 2

By Theorem 1, we define the result of chasing 𝐺 by Σ as the
result of any terminal chasing sequence of 𝐺 by Σ, denoted by
Chase(𝐺, Σ). If the sequence is valid, Chase(𝐺, Σ) has the form of R.
We refer to edges and attributes that are inR but not in𝐺 as deduced
associations of 𝐺 by Σ. Intuitively, they are introducing properties
and missing links and attributes. We denote by Assoc(𝐺, Σ) the set
of all such deduced associations.

5 PARALLEL DEDUCTION
Real-life graph data is often large, and even a polynomial time algo-
rithm is unacceptable, especially for online analysis. This motivates
us to develop a parallel algorithm with parallel scalability. We first
review the notion (Section 5.1) and give a sequential algorithm
(Section 5.2). We then develop a parallel algorithm with scalability
property (Section 5.3).

To simplify the discussion, without loss of generality, we focus
on GROs defined with connected graph patterns 𝑄 with one pivot.
The algorithms can be readily extended to process GROs with
disconnected patterns and patterns with two pivots.

5.1 Parallel scalability Revisited
To characterize the effectiveness of the parallel algorithm for as-
sociation deduction, we revisit the notion of parallel scalability
that was introduced in [32] and has been widely used in practice.
Consider a sequential algorithm A for association deduction, with
cost 𝑡 (|𝐺 |, |Σ|) measured in the sizes of graph 𝐺 , and Σ of GROs.

A parallel algorithm A𝑝 for association deduction is said to be
parallel scalable relative to yardstick A if its parallel running time

5

by using 𝑝 processors can be expressed as follows:

𝑇 (|𝐺 |, |Σ|, 𝑝) = 𝑂
(𝑡 (|𝐺 |, |Σ|)

𝑝

)
,

where 𝑝 ≪ |𝐺 |, i.e., the number of processors is much smaller than
real-life graphs 𝐺 , as commonly found in the real world.

Intuitively, parallel scalability guarantees speedup ofA𝑝 relative
sequential algorithmsA. Such algorithmA𝑝 “linearly” reduces the
running time of A when 𝑝 increases. Hence, A𝑝 is able to scale
with large 𝐺 by adding processors when needed.

Similarly, we say that a parallel algorithm A𝑝 for incremental
association deduction is parallel scalable relative to a sequential
incremental A if its cost with 𝑝 processors can be expressed as:

𝑇 (|𝐺 |, |Δ𝐺 |, |Σ|, 𝑝) = 𝑂
(𝑡 (|𝐺 |, |Δ𝐺 |, |Σ|)

𝑝

)
,

where 𝑡 (|𝐺 |, |Δ𝐺 |, |Σ|) is the worst-case running time of A.

5.2 A sequential algorithm
Now we design a practical sequential algorithm for the chase, de-
noted as SDeduc, to deduce new associations.

Overview.Algorithm SDeduc takes a graph𝐺 = (𝑉 , 𝐸, 𝐿, 𝐹), a set 𝐹𝑣
of external oracle values, and a set𝑀𝑠 of polynomial algorithms for
oracles as input and deduces a set Assoc of associations. It works
as follows. (a) It starts with Assoc(Σ,𝐺) = ∅. (b) For each 𝜑 in Σ, it
computes the candidates for the pivot nodes 𝑆 (𝑥), which consist of
all nodes in𝐺 that have the same label with 𝑥 . (c) For each𝑤 ∈ 𝑆 (𝑥),
it enumerates all pivoted matches 𝑆𝑤 of 𝑄 at 𝑤 . (d) For each 𝑆𝑤
such that 𝑆𝑤 |= 𝑋 , it adds associations by forward chasing step
with (𝜑, 𝑆𝑤) to Assoc.

The core procedure of SDeduc is to enumerate the pivoted
matches 𝑆𝑤 such that 𝑆𝑤 |= 𝑋 . However, there is no applicable
algorithm in place. In this section, we provide a match enumeration
algorithm, denoted as SMatch.

The skeleton of SMatch is the dual simulation procedure [33],
denoted as DualSim. Given a pattern 𝑄 and a graph 𝐺 , let’s review
the procedure DualSim.
Procedure DualSim (𝑄,𝐺). For each node 𝑢 in 𝑄 , DualSim first
initialize a set 𝑆 (𝑢) contains all nodes of𝐺 that have the same label
as 𝑢. Then update 𝑆 by the definition of dual simulation, a node 𝑣
is removed from 𝑆 (𝑣) unless (a) if there is a parent node 𝑢′ of 𝑢,
then there exists a parent node 𝑣 ′ ∈ 𝑆 (𝑢′); and (b) if there is a child
node 𝑢′ of 𝑢, then there exists a child node 𝑣 ′ ∈ 𝑆 (𝑢′). This process
is repeated until there are no more changes.

Then SMatch enumerates 𝑆𝑤 such that 𝑆𝑤 |= 𝑋 as follows.
Step 1: compute pivoted simulation match 𝑆𝑤 .We find that the
pivoted simulation for a DAG 𝑄 has locality property. That is, the
pivoted match 𝑆𝑤 is within a subgraph surrounding𝑤 . We define
such subgraphs as balls.
Balls. For a node𝑤 in a graph𝐺 and a positive integer 𝑟 , the ball with
center 𝑣 and radius 𝑟 is a subgraph of 𝐺 , denoted by 𝐺 [𝑤, 𝑟], such
that (1) for all nodes 𝑣 ′ in 𝐺 [𝑤, 𝑟], the shortest distance dist(𝑤, 𝑣 ′)
≤ 𝑟 , and (2) it is induced by the nodes of 𝐺 [𝑤, 𝑟].

Unless stated otherwise, the term “shortest distance” refers to
calculations conducted on the graph assuming it is undirected.
Lemma 2: Given a pattern 𝑄 [𝑥], a graph 𝐺 and a pivot match 𝑤 ,
let 𝑑𝑄 be the longest shortest distance form 𝑥 to other nodes 𝑣 ∈ 𝑄 ,
the pivoted match 𝑆𝑤 is within the ball 𝐺 [𝑤,𝑑𝑄]. 2

Proof: This follows from the definition of pivoted simulation
and DAG 𝑄 . Since 𝑄 has no cycle, for any nodes 𝑢′ ∈ 𝑆 (𝑢),
dist(𝑢′,𝑤)≤dist(𝑢, 𝑥) ≤ 𝑑𝑄 . 2

According to Lemma 2, for each𝑤 ∈ 𝑆 (𝑥), SMatch first compute
the ball 𝐺 [𝑤,𝑑𝑄]. Then it invoke DualSim (𝑄,𝐺 [𝑤,𝑑𝑄]) by fixing
𝑆𝑤 (𝑥) = {𝑤} to get 𝑆𝑤 .
Step 2: compute 𝑆𝑤 such that 𝑆𝑤 |= 𝑋 . According to the satis-
faction definition, we first handle the unary predicates and binary
predicates separately. (a) for each unary predicate 𝑥 .𝐴 = 𝑐 (𝑓 (𝑥)) in
𝑋 , and for each 𝑢′ in 𝑆𝑤 (𝑢), if 𝑢.𝐴 ≠ 𝑐 (𝑓 (𝑥) = false), then remove
the nodes 𝑢′ from 𝑆𝑤 (𝑢). (b) for each binary predicate 𝑥 .𝐴 = 𝑦.𝐵

(𝑓 (𝑥,𝑦)) in 𝑋 , we create a bipartite graph 𝑔 as follows. For each
𝑢 ∈ 𝑆𝑤 (𝑥) (𝑣 ∈ 𝑆𝑤 (𝑦)), we create a node 𝑢 (𝑣) in the left (right) part
of 𝑔, if 𝑢.𝐴 = 𝑣 .𝐵 (𝑓 (𝑥,𝑦)), then add an edge from 𝑢 to 𝑣 in 𝑔. At
the end, we remove isolate nodes in 𝑔 from 𝑆𝑤 . Then we update 𝑆𝑤
using the update process in DualSim.

Deducing associations. After obtaining 𝑆𝑤 such that 𝑆𝑤 |= 𝑋 ,
SDeduc deduces associations using 𝑌 . That is, for each 𝑥 .𝐴 = 𝑐

(𝑓 (𝑥)) in 𝑌 , for each 𝑢 ∈ 𝑆𝑤 (𝑥), add 𝑢.𝐴 = 𝑐 (𝑓 (𝑢)) to Assoc(Σ,𝐺);
for each 𝑥 .𝐴 = 𝑦.𝐵 (𝑓 (𝑥,𝑦)) in𝑌 , for each𝑢 ∈ 𝑆𝑤 (𝑥) and 𝑣 ∈ 𝑆𝑤 (𝑦),
add 𝑢.𝐴 = 𝑣 .𝐵 (𝑓 (𝑢, 𝑣)) to Assoc(Σ,𝐺).
Optimization strategy. (a)We build a candidate space structure [37],
denoted as CS, to maintain the edges between candidates 𝑆 (𝑣) and
those in 𝑆 (𝑣 ′) if (𝑣, 𝑣 ′) is in 𝑄 . It is a graph structure and keeps the
candidates’ edge information to avoid checking𝐺 . Furthermore, CS
is continually updated during the computation of 𝑆𝑤 .

CS is sound for enumerating pivoted simulation matches, i.e.,
enumerating 𝑆𝑤 on CS is equivalence to that on𝐺 . It is easily proved
by contradiction.

(b) SMatch also use a partial match extraction technique intro-
duced in [10] to filter 𝑆𝑤 ̸ |= 𝑋 or 𝑆𝑤 |= 𝑌 .

Correctness.We show that SDeduc correctly computes Assoc(𝐺, Σ)
to chase 𝐺 by Σ. First, the result returned by SDeduc is in
Assoc(𝐺, Σ). This follows from the definition of the chase and the
correctness of SMatch, since no associations are deduced from
SDeduc until partial matches become complete and 𝑋 → 𝑌 is not
satisfied. On the contrary, all associations in Assoc(𝐺, Σ) are com-
puted by SDeduc, since SDeduc inspects all candidate matches that
can contribute to the deduction of new associations.

Theorem 3: The association deduction of GROs is in PTIME. 2

Proof: We prove it by showing that algorithm SDeduc runs in
polynomial time. For each GRO 𝜑 = 𝑄 [𝑥] (𝑋 → 𝑌) in Σ, the set
of candidates is computed in 𝑂 (|𝑉 |) time, the construction of the
candidate space is in𝑂 (|𝑉 |2 |𝐸𝑄 |), SMatch takes𝑂 ((|𝑉 |+|𝑉𝑄 |) (|𝐸 |+
|𝐸𝑄 |)) +𝑇), where 𝑇 is the dependency checking time, in PTIME.
And deducing associations takes𝑂 ((|𝑉 | + |𝑉𝑄 |) (|𝐸 | + |𝐸𝑄 |))). Thus,
algorithm SDeduc is in𝑂 (|Σ| (|𝑉 | + |𝑉 |2 |𝐸𝑄 | + (2(|𝑉 | + |𝑉𝑄 |) (|𝐸 | +
|𝐸𝑄 |) +𝑇). It is in 𝑂 (|Σ| (|𝑉 |3 +𝑇), a polynomial time. 2

Analysis. We conduct a comparison between the deduction of
GROs and other graph rules, such as GEDs [14], GARs [10],
GFDs [6], and NGFDs [13], with the form of 𝑄 (𝑋 → 𝑌).

The complexity of deduction for these rules lies in computing the
matches of 𝑄 and checking 𝑋 → 𝑌 on those matches. In our case,

6

since we restrict our internal oracles to be in P, checking 𝑋 → 𝑌

in GROs is also in P, similar to other graph rules.
However, the deduction complexity of those comparison rules

is known to be NP-Complete. This intractability arises from the
match semantic they adopt, which is either isomorphism or ho-
momorphism. In contrast, the simulation-based semantics adopted
by GROs make their deduction tractable. In fact, even when the
pattern contains cycles, GROs deduction remains in P.

5.3 A parallel scalable algorithm

Overview. Algorithm PIncDeduce works with 𝑝 processors
𝑆1, · · · , 𝑆𝑝 on a graph 𝐺 that is partitioned via edge-cut [3] or
vertex-cut [31]. The processor 𝑆𝑐 is taken as the coordinator. It
first computes the candidate sets 𝑆 by DualSim and constructs the
candidate space CS for each GRO 𝜑 in Σ in parallel. Then for each
𝜑 = 𝑄 [𝑥0] (𝑥 → 𝑌) in Σ, it constructs a set of work units (𝜑,𝑤)
for 𝑤 ∈ 𝑆 (𝑥0). Finally, each processor handles its workload and
deduces associations in parallel, like in SDeduc.

However, there are two challenges. (1) The candidate space of a
work unit may reside in different fragments. (2) The workloads of
some processors may be skewed, since (a) the workloads in each
processor may be unbalanced; and (b) some work units may take
much longer e.g., when accessing a large candidate space.

To cope with these challenges, previous graph rules with iso-
morphism semantics adopt their locality property, reducing the
computation on a (large) graph to small areas surrounding AFF,
and then transfer AFF of the border nodes and the skew work unit
to other processors. e.g., 𝐺𝑑Σ (𝑣) for a pivot 𝑣 in 𝐺 where 𝑑Σ is the
maximum diameter 𝑑𝑄 for all patterns 𝑄 that appear in Σ [13].

The locality property also applies to the computation of pivoted
matches for GROs, as the patterns𝑄 in GROs are acyclic. However,
in dense graphs, the size of the set AFF, represented by 𝐺𝑑Σ (𝑣),
can be significantly large. Nonetheless, the candidate set (CS) for
GROs is relatively smaller as it only includes the neighboring nodes
of pivots that are considered potential matches. Furthermore, the
size of the CS gradually decreases during the match enumeration
process.

To improve the efficiency of matching GROs, we propose two
techniques. Firstly, we introduce a “necessary affected area” for bor-
der nodes, which enables us to determine their status by assembling
the necessary information from other processors at once. Secondly,
we adopt a “bounded affected area” to balance the workload. In
cases of uneven distribution, heavy processors can send work units
within the bounds of the affected area.

(a) Necessary affected area. According to lemma 4, the necessary
affected area for 𝑄 , denoted as NFA(Q), is defined as the con-
nected parts of CS𝑖 that include the border nodes. Then NFA(Σ) =⋃

𝜑∈Σ∧𝑄∈𝜑 NFA(Q).
Lemma 4: For a given pattern 𝑄 and a fragment 𝐹𝑖 , if a node 𝑥 ∈ 𝐹𝑖
is in a final pivoted match, then it must belong to the candidate space
𝐶𝑆𝑖 of 𝑄 in 𝐹𝑖 . Here, 𝐶𝑆𝑖 is the updated CS structure by setting the
matching status of all border nodes as true. 2

Proof: The lemma can be proved by contradiction. Suppose that
there exists a node 𝑣 in 𝐹𝑖 that is not in CS𝑖 , but is in a pivoted
match 𝑆𝑤 . Let us assume that 𝑣 is in 𝑆𝑤 (𝑢) for 𝑢 ∈ 𝑄 . If 𝑣 is a

border node in 𝐹𝑖 , since its status 𝑆 (𝑢) is true for each 𝑢 in 𝑄 such
that 𝐿𝑄 (𝑢) = 𝐿(𝑣). Therefore, it must be in 𝐶𝑆𝑖 , which contradicts
the assumption. On the other hand, if 𝑣 is not a border node in 𝐹𝑖 ,
then since 𝑣 is in 𝑆𝑤 (𝑢), it must be in 𝐶𝑆𝑖 , again contradicting the
assumption. Thus, the lemma is satisfied. 2

Example 7: Consider graph 𝐺2 in Fig. 1. It is partitioned into two
fragments 𝐹1 and 𝐹2 by the edge (transf1,acc2), (transf3,acc1) and
(acc3,transf4). A set Σ of GROs includes only𝜑2 of Example 4.

The border node set in 𝐹1 is {acc2, transf3, acc3}. And the border
node set in 𝐹2 is {transf1, acc1, transf4}. In 𝐹1, by setting both of acc2
and acc3 in sim (𝑦1), sim (𝑦2) and sim (𝑦3), we computeNFA1 (𝜑2) =
𝐹1. In 𝐹2, the same procedure applies, and NFA2 (𝜑2) = 𝐹2. 2

(b) Bounded affected area. Since𝑄 is acyclic, we define the bounded
affected area as the subgraph 𝐶𝑆 (𝜑,𝑤) induced by𝑤 of CS. Its size
is not larger than𝐺𝑑Σ (𝑤). We balance the workload by distributing
work units (𝜑,𝑤) with 𝐶𝑆 (𝜑,𝑤) to other processors. To further
reduce communication cost, we can compute partial matches of
𝑆𝑤 in the local worker and then distribute work units (𝜑,𝑤) with
updated 𝐶𝑆 (𝜑,𝑤).
Workload balancing. PDeduce adopts theworkload balancingmech-

anism in [10]. We define the skewness of 𝑆𝑖 as 𝑐𝑜𝑠𝑡 (𝑊𝑖)
avg

𝑡 ∈ [1,𝑝]𝑐𝑜𝑠𝑡 (𝑊𝑡) .
Here 𝑐𝑜𝑠𝑡 (𝑊𝑖) = Σ (𝜑,𝑤) ∈𝑊𝑖

|𝐶𝑆 (𝜑,𝑤) |. It checks the skewness of the
processors in a time interval intvl. If the skewness of 𝑆𝑖 exceeds a
threshold 𝜂 (2.5 in experiments), it evenly distributes the work units
and their union of candidate space in𝑊𝑖 to those 𝑆 𝑗 ’s that have
skewness below 𝜂′ (0.5 in experiments). The distribution method is
the same as described in [6].

Algorithm. Putting these together, we present algorithm PDeduce
in Fig. 2. It first constructs the workload 𝑊 (lines 2). Then it
balances the workload and makes all work units evenly distributed
among each worker (lines 5-6). Next, PDeduce invoke Expand to
deduce associations Assoc(𝐹𝑖 , Σ) in parallel for each 𝑖 ∈ [1, 𝑝] (line
7). It periodically balances workload (line 9), until all processors
complete their work (line 11). Finally, PDeduce collects local
associations Assoc(𝐹𝑖 , Σ) from all processors and assembles the
partial matches as ΔAssoc. The union of all Assoc(𝐹𝑖 , Σ) and
ΔAssoc is Assoc(𝐺𝑐 , Σ)(line 10) and is returned (line 11).

At each processor 𝑃𝑖 , procedure Expand processes each work
unit to enumerate the pivoted matches and deduce associa-
tions(lines 2-3). During the enumeration process, workloads are
balanced based on cost estimation, as described above. The local
associations deduction Assoc(𝐹𝑖 , Σ) and workload𝑊𝑖 are updated
accordingly. It returns Assoc(𝐹𝑖 , Σ) to 𝑆𝑐 when no work units re-
main in𝑊𝑖 , i.e., when 𝑝𝑖 finishes its workload.

Example 8: Recall graph 𝐺 along with its partitions, and GROs Σ
from Example 7. PDeduce first computes the candidate sets sim for
Σ in each fragment 𝐹𝑖 for 𝑖 ∈ [1, 2]. Then workload𝑊𝑖 in 𝐹𝑖 is cre-
ated for 𝑖 ∈ [1, 2]. where𝑊1= {𝑤1=(𝜑2,Bob)},𝑊2 ={𝑤2=(𝜑2,Ann)}.
The size of the workload of𝑊1 is 7, while the size of the work-
load of𝑊2 is 8. PDeduce now begin to process border nodes to
get NFA1 (𝜑2) in 𝐹1, and NFA2 (𝜑2) in 𝐹2 (See Example 7). Then
NFA1 (𝜑2) is send to 𝐹2 and NFA2 (𝜑2) is send to 𝐹1.

7

Algorithm: PDeduce
Input: A fragmented graph𝐺 across 𝑝 processors 𝑆1, · · · , 𝑆𝑝 ,

a set Σ of GROs.
Output: The set Assoc (Σ,𝐺) of associations.
1. Assoc:= ∅;
2. create and estimate workload𝑊𝑖 for each worker in parallel;
3. compute NFA(Σ,𝐹𝑖) of border nodes in parallel;
4. send NFA(Σ,𝐹𝑖) to other workers;
5. create a workload plan plan to balance workload;
6. send the plan to all processors
7. invoke Expand to compute new associations in parallel;
8. repeat
9. periodically balance workload at interval intvl.
10. until all 𝑆𝑖 return Assoc(𝐹𝑖 , Σ)
11. get new associations ΔAssoc by assembling partial matches;
12. return Assoc← ⋃

𝑖∈ [1,𝑝] Assoc(𝐹𝑖 , Σ) ∪ ΔAssoc

Procedure: Expand/* executed at each worker 𝑆𝑖 in parallel */
Input: fragment 𝐹𝑖 , Message𝑀𝑖 , a set of work units𝑊𝑖

Output: Assoc(𝐹𝑖 , Σ)
1. while𝑊𝑖 is not empty do
2. fetch a work unit (𝜑, 𝑤) from𝑊𝑖

3. computes 𝑆𝑤 and deduce associations with (𝜑, 𝑆𝑤) ;
4. if workload is skewed do
5. balance𝑊𝑖 to other workers.
6. send Assoc(𝐹𝑖 , Σ) to 𝑆𝑐

Figure 2: Algorithm PDeduce
Each 𝐹𝑖 then can correctly compute partial matches. The partial

matches are assembled in coordinator 𝑆𝑐 as a complete match and
associationsMlauder(𝑥) for 𝑥 ∈ Bob, Ann are deduced. 2

Correctness. Although PDeduce computes associations simulta-
neously on multiple processors, the correctness of this parallel
association deduction method is warranted. (1) The result re-
turned by PDeduce is in Assoc(𝐺, Σ), which is ensured by SDeduc
since PDeduce just parallelizes SDeduc. (2) all associations in
Assoc(𝐺, Σ) are computed by PDeduce, including deduced matches
involving multiple fragments and those can be locally computed in
a single fragment.

Theorem 5: PDeduce is parallel scalable to SDeduc. 2

Proof: We show that with 𝑝 processors, PDeduce runs in
𝑂 (|Σ| ((|𝑉 |3 +𝑇)/𝑝) time with 𝑝 processors. Obviously, identifying
the candidates for Σ takes 𝑂 (|Σ| |𝑉 |/𝑝) time, compute the neces-
sary affected area for border nodes takes less than 𝑂 (|Σ| |𝑉 |3/𝑝),
send such area takes 𝑂 (|𝐺 |/𝑝), receive such area from other pro-
cessors takes 𝑂 ((𝑝 − 1) |𝐺 |/𝑝), locally compute associations take
𝑂 (|Σ| |𝑉 |3/𝑝), send them to coordinator 𝑆𝑐 takes𝑂 (|Σ| |𝐺 |/𝑝), work-
load balancing takes 𝑂 (|𝐺 |/𝑝). Hence PDeduce takes at most
𝑂 (|Σ| (|𝑉 |3 +𝑇 /𝑝) time. 2

6 INCREMENTAL DEDUCTION
Real-life graphs frequently change, and association deduction is
costly over large-scale graphs. These highlight the need for incre-
mental association deduction. Next, we develop a parallel algorithm
for incremental deduction, denoted as PIncDeduce.

Challenges. The internal oracles in GROs make the impacts of the
edges inserted and deleted in Assoc(Σ,𝐺) more complicated than
that of GARs. For instance, oracles including aggregate operators.

Algorithm: PIncDeduce
Input: A fragmented graph𝐺 across 𝑝 processors 𝑆1, · · · , 𝑆𝑝 ,

a set Σ of GROs, and a batch update Δ𝐺 .
Output: The set ΔAssoc+ and ΔAssoc− of associations.
1. 𝑃 := ∅ /* update triggers */
2. for each unit insertion (resp. deletion) update of 𝑒 = (𝑣, 𝑣′) in

Δ𝐺 and 𝑒𝑝 = (𝑢,𝑢′) in𝑄 of GRO 𝜑 = 𝑄 (𝑥0) (𝑋 → 𝑌)
in Σ having 𝐿𝑄 (𝑢) = 𝐿 (𝑣) and 𝐿𝑄 (𝑢′) = 𝐿 (𝑣′) do

3. add (𝜑, 𝑒𝑝 , 𝑒, +) (resp. (𝜑, 𝑒𝑝 , 𝑒, −)) to 𝑃 ,
4. send 𝑃 to each worker 𝑝𝑖 and construct workload𝑊𝑖 in parallel;
5. process the work units in parallel;
6. invoke DelAssoc to compute ΔAssoc+

𝑖
and ΔAssoc−

𝑖
in parallel;

7. ΔAssoc+ =
⋃

𝑖∈ [1,𝑝] ΔAssoc
+
𝑖
; ΔAssoc− =

⋃
𝑖∈ [1,𝑝] ΔAssoc

−
𝑖
;

8. return ΔAssoc+ and ΔAssoc− ;

Figure 3: Algorithm PIncDeduce

Both the inserted edges and the deleted edges could trigger the gen-
eration of new associations and remove some associations. These
results in the association status, i.e., invalid or valid, may be changed
more than one time in the incremental computation.

Auxiliary structures. To address the above problem, PIncDeduce
maintains an association dependency graph 𝐺𝑑 to store the affected
relation for each deduced association. We say that an association 𝛼

is affected by 𝛼 ′, if removal 𝛼 ′ makes (a) the pivoted match that can
deduce 𝛼 no longer holds, or (b) the precondition is not satisfied.

Then 𝐺𝑑 is constructed as follows. (a) 𝐺𝑑 is initialized by all
deduced associations and a special node 𝑣∅ with empty. (b) For any
two associations 𝛼 and 𝛼 ′ in 𝐺𝑑 , if the association 𝛼 is affected by
𝛼 ′ through (𝜑,𝑤), then there exists an edge (𝛼 ′, 𝛼) with the label
(𝜑,𝑤) in 𝐺 . (c) If there is no 𝛼 ′ that affects 𝛼 , and 𝛼 is deduced by
(𝜑,𝑤), then the edge (𝑣∅ , 𝛼) with the label (𝜑,𝑤) is added to 𝐺𝑑 .
𝐺𝑑 can be readily obtained when running PDeduce and its size is
polynomial in |𝐺 | and |Σ| (the proof of Theorem 1).

Note that in PDeduce, an association 𝛼 can be deduced by the
following three cases. (a) 𝛼 is deduced by a completed match 𝑆𝑤
of GRO 𝜙 ; (b) 𝛼 has been deduced by 𝑆𝑤 but can also be deduced
by another completed match 𝑆 ′𝑤 of GRO 𝜙 ′; and (c) 𝛼 has been
deduced but can also be deduced by a partial match 𝑆𝑤𝑝 of GRO
𝜑 . For cases (a) and (b), the affection relationship can easily be
constructed in𝐺𝑑 . However, for case (c), the affection relationship
must be verified by completing 𝑆𝑤𝑝 . To improve efficiency, we
avoid computing affection relations for case (c) and instead store
the partial match (𝜑, 𝑆𝑤𝑝) in a list 𝐿 within 𝐺𝑑 . This list will be
processed for association removal checking when necessary.

Algorithm. As shown in Fig. 3, PIncDeduce takes as input Σ, Δ𝐺
and, moreover, the chase graph 𝐺𝑐 and the auxiliary structure
𝐺𝑑 that are cached after the batch execution of PDeduce and are
distributed across workers. Denote by Δ𝐺+ and Δ𝐺− the inserted
and deleted edges in Δ𝐺 , respectively. PIncDeduce computes the
changes deducedΔ (𝐺,Δ𝐺, Σ) to the old associations deduced.

After adjusting 𝐺𝑐 with update Δ𝐺 (line 2), PIncDeduce first
constructs the workload𝑊 as follows. For each edge 𝑒 = (𝑣, 𝑣 ′) in
Δ𝐺 , it computes the update triggers for 𝑒 . i.e., the set of GROs in
Σ that may deduce associations by changes in 𝑒 (lines 2-3). Then
for each update trigger (𝜑, 𝑒𝑝 , 𝑒, +) or (𝜑, 𝑒𝑝 , 𝑒,−), it computes a
set of work units (𝜑,𝑤) that 𝑤 is in 𝑆 (𝑥0) and is connected with
𝑒 in 𝐺 according to a partial match of a shortest path from 𝑒𝑝 to

8

𝑥0 in 𝜑 (line 4). Then for each work unit (𝜑,𝑤), (a) it first follows
the processing of the work unit in PDeduce by adopting a removal
delay strategy to compute a set of newly introduced associations
(line 5); (b) it then invokes the procedure DelAssoc to find a set
DelAssoc−𝑖 of associations that become invalid and update the added
associations by removing the associations in DelAssoc−𝑖 (line 6). (3)
Finally, the associations deduced in each worker are assembled in
the coordinator in 𝑆𝑐 (lines 7-8).
Remove delay strategy. PIncDeduce first processes 𝜑 that can de-
duce new associations, since new associations may affect the re-
moval of old associations. But the opposite cannot happen. Hence
PIncDeduce adopts a remove delay strategy to ensure that all new
associations are deduced prior to all invalid old associations. More
specifically, when an invalid association 𝛼 is deduced by 𝜑 and
its match 𝑆𝑤 , the information (𝛼, 𝜑,𝑤) is recorded in a set 𝐶𝑑𝑒𝑙 to
perform removal checks in the DelAssoc procedure.

Catching invalid associations. After processing all the work units,
procedure DelAssoc began to refine 𝐶𝑑𝑒𝑙 to catch invalid associa-
tions. For each (𝛼, 𝜑,𝑤) in𝐶𝑑𝑒𝑙 , it first removes in-going edges of 𝛼
with label (𝜑, 𝑆𝑤), and then check the in-degree of 𝛼 . If there exist
no precedence nodes for 𝛼 , we further check its list 𝐿. (a) If 𝛼.𝐿 is
∅, then 𝛼 can be safely removed. Else (b) (𝜑 ′, 𝑆𝑤) in 𝐿 need to be
expanded and completed to decide whether it can deduce 𝛼 . This
process continues until all elements 𝐿 are processed.

If 𝛼 is removed, the associations 𝛼 ′ affected by 𝛼 may be removed
successively. It checks 𝛼 ′ just as checking 𝛼 does. The process
continues until there exists no association that can be removed.
Example 9: Recall graph 𝐺 and GROs Σ from Example 8. Con-
sider Δ𝐺 that inserts 𝑒1= (Alice, owns, acc3) and deletes 𝑒2 = (Ann,
owns, acc2). PIncDeduce first computes the triggers 𝑃 as {(𝜑2, 𝑒𝑝1,
𝑒1,+), (𝜑2, 𝑒𝑝2, 𝑒1, +), (𝜑2, 𝑒𝑝1, 𝑒2,-), (𝜑2, 𝑒𝑝2, 𝑒2, -)}, where 𝑒𝑝1 = (𝑥0,
owns, 𝑦2) and 𝑒𝑝2 = (𝑥1, owns, 𝑦1). 𝐺𝑑 is constructed as (∅, (𝜑2,
Bob), Mlauder(Bob)), and (∅, (𝜑2,Ann), Mlauder(Ann)) with 𝐿 = ∅.
PIncDeduce then creates the workload𝑊1 in 𝐹1 and𝑊2 in 𝐹2 ac-
cording to 𝑃 , where𝑊1 = {𝑤1 = (𝜑2, Bob)},𝑊2 = {𝑤2 = (𝜑2, Ann),𝑤3
= (𝜑2, Alice) }. Then𝑊1 and𝑊2 will be computed in a way similar to
that of Example 8. During the process, 𝐺𝑑 is updated by adding (∅,
(𝜑2, Alice), Mlauder(Alice)), and 𝐶𝑑𝑒𝑙 = {(Mlauder (Ann), 𝜑2, Ann)}.
Then it catches invalid associations by 𝐶𝑑𝑒𝑙 and 𝐺𝑑 , andMlauder
(Ann) is removed from 𝐺𝑑 . Finally, ΔAssoc+ = { Mlauder (Alice) }
and ΔAssoc− = {Mlauder (Ann) }. 2

We have the following about algorithm PIncDeduce.
Proposition 6: The associations in Assoc(𝐺 ⊕ Δ𝐺, Σ) \Assoc(𝐺, Σ)
and Assoc(𝐺, Σ) \ Assoc(𝐺 ⊕ Δ𝐺, Σ) are computed without any un-
necessary invalid attempts in algorithm PIncDeduce. 2

Proof: It is ensured by (a) new associations deduced in PIncDeduce
only have one chance to become invalid, and (b) once an association
is confirmed invalid, it cannot become valid anymore. 2

Theorem 7: PIncDeduce is parallel scalable relative to its sequential
algorithm. 2

Proof: We show that with 𝑝 processors. Its sequential algo-
rithm first computes update triggers just like PIncDeduce does.
Then it constructs work units and computes them in 𝐺 . It takes
𝑂 (|Σ| |Δ𝐺 | |𝑉 |3) time. Now we prove that PIncDeduce runs in

Table 1: Real-life graphs

Dataset Type Vertices Edges
DBpedia [1] knowledge base 6.2M 33.4M
YAGO2 [41] knowledge base 2M 5.7M
DBLP [44] citation network 0.2M 0.3M
IMDB [29] knowledge graph on movies 16.7M 43.2M

Table 2: Accuracy Evaluation

Dataset Methods Precision Recall F-score

DBpedia
GARs 0.995 0.677 0.806
GROs 0.996 0.841 0.912
Impro. 1% 16.4% 10.6%

YAGO2
GARs 0.959 0.550 0.699
GROs 0.960 0.730 0.829
Impro. 1% 18% 13%

DBLP
GARs 0.997 0.479 0.64
GROs 0.998 0.608 0.755
Impro. 1% 13% 16.6%

IMDB
GARs 0.990 0.560 0.715
GROs 0.994 0.741 0.849
Impro. 4% 18.1% 13.4%

𝑂 (|Σ| |Δ𝐺 | |𝑉 |3/𝑝) time for 𝑝 ≤ |𝑉 |3 + 𝑇 /(|Σ| |Δ𝐺 |). First, com-
puting update triggers and work units takes 𝑂 (|Σ| |Δ𝐺 |) time;
Then the work units computing in parallel takes 𝑂 (|Σ| |Δ𝐺 | (|𝑉 |3 +
𝑇)/𝑝). When 𝑝 ≤ |𝑉 |3 + 𝑇 /(|Σ| |Δ𝐺 |), taken together, the cost of
PIncDeduce is 𝑂 (|Σ| |Δ𝐺 | |𝑉 |3/𝑝). This verifies the relative parallel
scalability of PIncDeduce. 2

7 EXPERIMENTAL STUDY
Using real-life and synthetic graphs, we experimentally evaluated
the accuracy, efficiency and scalability of our (incremental) asso-
ciation deduction algorithms. We also conducted a case study to
demonstrate the effectiveness of GROs with real-life data.
Experimental setting. We used four real-life graphs as summa-
rized in Table 1. We also generated synthetic graphs with size up
to 300 million vertices and a billion edges, with 𝐿 drawn from an
alphabet of 30 labels, and 𝐹𝐴 assigning 5 attributes with values from
an active domain of 1000 values, to test scalability.
Oracles. We utilize both external and internal oracles to enhance
our analysis. External oracles include (1) up-curve researcher detec-
tion [4] for DBLP, which identifies researchers who are currently
producing high-quality work, and (2) movie scores for IMDB from
douban, a Chinese social media platform that enables users to rate
and review movies, books, and other forms of media.

Internal oracles consist of (1) avg and count operators for papers
and authors in DBLP, (2) avg and count operators for movies in
IMDB, (3) rank operator for people in DBpedia and YAGO2, and
(4)ML models that follow GARs [10] for all datasets, including two
well-trained ML classifiers: SimplE [30] and ComplEx [42].
GRO generator. For each graph, we generated GROs as follows. (a)
We added all external oracles 𝑓 (𝑥) for the nodes 𝑥 and took 𝑓 (𝑥)
as an attribute value of 𝑥 ; for the external oracle 𝑓 (𝑥,𝑦), we added
a new edge between 𝑥 and 𝑦 with the label 𝑓 . (b) We added all
missing links predicted by the ML classifier between the nodes in
each graph. (c) We designed an internal oracle set 𝐹 and polynomial
algorithms to compute them. (d) We then used an extension of
the discovery algorithm for GFDs [12] to discover GROs. This
algorithm interleaves vertical spawning to extend the patterns 𝑄
and horizontal spawning to find dependencies 𝑋 → 𝑌 .

We made several modifications for GROs. First, we used pivoted
9

match semantics instead of isomorphism semantics.We assume that
only nodes of specified types can be used as pivots, and once a pivot
is designated, it will not be changed during the expansion process.
Second, when discovering dependencies (𝑋 → 𝑌), we consider
not only constant and variable attribute predicates, but also oracles
that have been designed. The oracles are computed by its designed
algorithm and then used as boolean predicates in the expansion pro-
cedure. Third, for each discovered GRO 𝜑 = 𝑄 [𝑥] (𝑋 → 𝑌), we re-
placed an edge 𝑒 = (𝑥, 𝜏,𝑦) with the predicateML modelM(𝑥,𝑦, 𝜄)
if its match was obtained primarily by modelsML (𝑓 (𝑥,𝑦)). If there
exists a predicate 𝑥 .𝐴 = true and 𝐴 imported by an external oracle
𝑓 in 𝐹 , we replace 𝑥 .𝐴 = true with the predicate 𝑓 (𝑥).

We discovered and manually selected 200 GROs for the real-life
datasets and the synthetic graph. TheseGROs have at most 7 nodes
in their patterns and the average number of predicates is 4.

We also discovered and then selected 200 GARs following [10]
from DBpedia, YAGO2, DBLP, IMDB, and the synthetic graph, re-
spectively. To make it fair, these rules have a similar number of
pattern nodes and literals with selected GROs.
Δ𝐺 . We generated random updates Δ𝐺 for real-life and synthetic
graphs, controlled by the size |Δ𝐺 | and the ratio 𝜏 of edge deletions
to insertions. We set 𝜏 to 1 by default, and i.e., the sizes of the graphs
remain stable after updates.
Baselines. Apart from implementing SDeduc, PDeduce (Section 5)
and PIncDeduce (Section 6) in C++, we also compared with the
following baselines. (1) A variant PDeduceN of PDeduce, without
workload balancing; and a variant PIncDeduceN of PIncDeduce
without removal delay strategy. (2) The sequential deducing associ-
ation method for GARs [10], denoted as SGAR, its parallel version,
denoted as PGAR, and its incremental version, denoted as PIncGAR.
We did not compare our approach with other association deduction
algorithms, as GARs have been shown to possess greater expressive
power than existing graph rules and have defeated them in [10].
Accuracy. The accuracy, to evaluate the quality of associations
deduced, is evaluated over a noisy version of each real-life graph,
Following [5, 10, 21], we treated the original graphs as “correct” and
introduced noises by randomly removing 3% edges and 3% attributes
of each data set. We measured the accuracy by precision, recall and
F-score, which are defined as (1) the ratio of removed associations
deduced to all associations deduced by the methods, (2) the ratio of
associations correctly deduced to all associations removed, and (3)
2 · (precision · recall)/(precision + recall), respectively.

The experiments were conducted on GRAPE [22], deployed on
an HPC cluster of up to 10 machines connected by 10Gbps links.
For each machine, we used 2 processors powered by Intel Xeon
2.2GHz and 64G memory. Each experiment was run 5 times. The
average is reported here.
Experimental results. Next, we report our findings.
Exp-1: Accuracy. We first tested the accuracy of GROs. Table 2 re-
ports the accuracy of GROs and GARs over four real-life graphs. It
shows that both GROs and GARs have very high precision, up
to 99%. However, on average, GROs beats GARs on recall and
F − score by 16.4% and 13.4%, respectively. These results can be
attributed to the following reasons: (a) BesidesML models, GROs
includes more computation models, which contribute to its high

recall in predictions. (b) GROs employ simulation-based semantics,
which provide a more relaxed interpretation of patterns while still
preserving their topological structures.
Exp-2: Efficiency. We next evaluated the efficiency of sequential al-
gorithm SDeduc, and parallel algorithms PDeduce and IncDeduce.
The number ||Σ|| of rules, the average number of nodes |Σ𝑄 | of the
patterns in Σ, the size |Δ𝐺 | of updates for incremental deduction,
and the number 𝑛 of processors for parallel algorithms were fixed
as 120, 5.9, 10%|𝐺 | and 12, respectively, unless otherwise stated.
Exp-2-1: Sequential cost. Figure 4(r) reports the cost of sequential
SDeduc and SGAR. Algorithm SDeduc performs reasonably well: it
takes up to 6.37 hours onDBpedia. SDeduc beats SGAR by 4.36, 4.91,
4.01, 4.63 times on DBpedia,YAGO2,DBLP and IMDB, respectively.
Exp-2-2: Parallel cost. Figures 4(a)-4(h) reports the parallel cost
of PDeduce and PIncDeduce by varying ||Σ|| and |Σ𝑄 |. Based on
the results, we can summarize the following findings.
(1) Parallel deduction. (a) On average, PDeduce is 5.4, 6.9,4.7, 2.3
times faster than PGAR on DBpedia,YAGO2,DBLP,and IMDB, re-
spectively. This verifies that the simulation-based semantic signif-
icantly enhances the efficiency of deducing associations. (b) On
average, PDeduce is on average 2.7, 2.5,2.0, 2.0 times faster than
PDeduceN, validating that the optimization strategies really work.
(2) Incremental deduction. On average, PIncDeduce is 4.1, 2.3, 4.5,
1.7 times faster than PIncGAR on the DBpedia, YAGO2, DBLP, and
IMDB, respectively. It is also on average 2.0, 1.9,2.7, 1.7 times faster
than PIncDeduceN. These results also highlight the advantages of
using simulation-based semantics and optimization strategies.

(3) PIncDeduce outperforms PDeduce on average 1.5, 4.5, 2.4, 2.8
times on the DBpedia, YAGO2, DBLP, and IMDB, respectively,
demonstrating the necessity of an incremental algorithm.
Exp-2-3: Parameters. We now evaluate the effect of the parame-
ters for parallel algorithms.

Varying ||Σ||. Varying ||Σ|| from 40 to 200, Figures 4(a)-4(b) show
that (a) the more rules are used, the longer all parallel algorithms
take. (b) PDeduce and IncDeduce are feasible with real-life GROs,
e.g., they take 20.45 s and 11.40 s over DBpedia when ||Σ|| = 200
as opposed to 40.93 s by PDeduceN and 21.02 s by PIncDeduceN.
The results on YAGO2, DBLP and IMDB are consistent.
Varying |Σ𝑄 |. We varied |Σ𝑄 | from 3 to 7. As shown in Figures 4(e)-
4(f), (a) all algorithms take longer on larger |Σ𝑄 |. as expected. (b)
PDeduce and IncDeduce are feasible with real-life GROs, e.g., they
take 17.7s and 4.2s over DBpedia when |Σ𝑄 | = 5, as opposed to
304.5s by PDeduceN and 33.9s by PIncDeduceN. The results on
YAGO2, DBLP and IMDB are consistent.
Varying Δ𝐺 . Varying |Δ𝐺 | from 5% up to 25% of |𝐺 |, Figures 4(i)-4(k)
report the results on four datasets. (1) PIncDeduce is 1.6 to 1.1 (resp.
4.7 to 4.3, 2.5 to 1.7, and 3.0 to 1.2) times faster than PDeduce over
the DBpedia (resp. YAGO2, DBLP and IMDB) when |Δ𝐺 | varies
from 5% to 25%. (2) PIncDeduce beats PDeduce even when |Δ𝐺 |
is up to 25% of |𝐺 |. This justifies the need for the incremental
deduction. (3) All incremental methods take longer for larger |Δ𝐺 |,
while batch methods are indifferent to |Δ𝐺 |.
Exp-3: Scalability. In the same default setting as for Exp-2, we

10

10
3

10
4

40 80 120 160 200

T
im

e
(s

ec
o
n
d
s)

(a) Varying ||Σ || (DBpedia)

10
3

10
4

40 80 120 160 200

T
im

e
(s

ec
o
n
d
s)

(b) Varying ||Σ || (YAGO2)

10
1

10
2

10
3

10
4

40 80 120 160 200

T
im

e
(s

ec
o
n
d
s)

(c) Varying ||Σ || (DBLP)

10
3

10
4

40 80 120 160 200

T
im

e
(s

ec
o
n
d
s)

(d) Varying ||Σ || (IMDB)

10
2

10
3

10
4

3 4 5 6 7

T
im

e
(s

ec
o
n
d
s)

(e) Varying |Σ𝑄 | (DBpedia)

10
3

10
4

3 4 5 6 7

T
im

e
(s

ec
o
n
d
s)

(f) Varying |Σ𝑄 | (YAGO2)

10
2

10
3

3 4 5 6 7

T
im

e
(s

ec
o
n
d
s)

(g) Varying |Σ𝑄 | (DBLP)

10
3

10
4

3 4 5 6 7

T
im

e
(s

ec
o
n
d
s)

(h) Varying |Σ𝑄 | (IMDB)

10
3

10
4

5% 10% 15% 20% 25%

T
im

e
(s

ec
o
n
d
s)

(i) Varying |Δ𝐺 | (DBpedia)

10
3

10
4

5% 10% 15% 20% 25%

T
im

e
(s

ec
o
n
d
s)

(j) Varying |Δ𝐺 | (YAGO2)

 0

 500

 1000

 1500

 2000

5% 10% 15% 20% 25%

T
im

e
(s

ec
o
n
d
s)

(k) Varying |Δ𝐺 | (DBLP)

5

10

15

20

25

5% 10% 15% 20% 25%

T
im

e
(s

ec
o
n
d
s)

*
1
0

3

(l) Varying |Δ𝐺 | (IMDB)

10
3

10
4

4 8 12 16 20

T
im

e
(s

ec
o
n
d
s)

(m) Varying 𝑛 (DBpedia)

10
3

10
4

4 8 12 16 20

T
im

e
(s

ec
o
n
d
s)

(n) Varying 𝑛 (YAGO2)

10
1

10
2

10
3

10
4

4 8 12 16 20

T
im

e
(s

ec
o
n
d
s)

(o) Varying 𝑛 (DBLP)

10
2

10
3

10
4

4 8 12 16 20

T
im

e
(s

ec
o
n
d
s)

(p) Varying 𝑛 (IMDB)

10
1

10
2

10
3

0.2 0.4 0.6 0.8 1.0

T
im

e
(s

ec
o
n
d
s)

(q) Synthetic (scale factor)

10
3

10
4

10
5

DBpedia YAGO2 DBLP IMDB

T
im

e(
se

co
n
d
s)

SDeduc
SGAR

(r) Sequential cost

Infectious Disease
Prevention &
Dynamic Monitoring

big
data

heritage

risk

Heritage Security
Risk Analysis based
on big data

JingYi Spatiotemporal
Big Data Service
System

project

institution
keyword

� �’

� �

attend keywordQ'

(s) Case1:Institution recommendation

Sacred
Heart Folk
Museum

 Heaven
and

 earth flow
7788

store heritagewebsite
own sell

� � �

Q

(t) Case2:Risk detection

Figure 4: Efficiency and scalability

next evaluated the scalability of the deduction approaches.
Varying 𝑛. We varied the number 𝑛 of processors from 4 to 20. Fig-
ures 4(m) to 4(p) show the results On the DBLP, DBpedia, YAGO2,
and IMDB datasets.
(1) Parallel deduction. (a) PDeduce scales well: the improvement is
4.2,3.5, 4.5 and 4.1 times,respectively, when 𝑛 varies from 4 to 20. (b)
PDeduce works well on real-life graphs: it takes only 2091s (resp.
1219s, 83s, 1064s), respectively, to process 10% updates using 20
processors.
(2) Incremental deduction., (a) PIncDeduce scales well: the improve-
ment is 3.3, 2.8, 3.5 and 3.3 times, respectively, when 𝑛 varies from

4 to 20. (b) PIncDeduce works well on real-life graphs: it takes only
835s, 1102s, 40s, 487s, respectively, to process 10% updates using 20
processors.
Impact of |𝐺 |. Varying the scale factor from 0.2 to 1.0, we tested
(incremental) association deduction on synthetic graphs. Fig. 4(q)
shows : (a) all algorithms take longer over larger𝐺 . (b) PDeduce and
PIncDeduce are feasible on large graphs, taking 131.42s, 72.111s
using 120 GROs on graphs with 1.7 million nodes and 5 million
edges; In contrast, PGAR and PIncGAR ran over 1857s and 622s.
Exp-4: Case study. We take two examples during a program about
Heritage Security Risk Analysis using big data technology, shown

11

in Figure 4(t) and Figure 4(s).
Institution recommendation. To form program teams, we have
a GRO 𝜑 ′ = 𝑄 ′ [𝑥,𝑦] (Norisk(𝑥) ∧ count(𝑧) ≥ 2 → (𝑥, recom, 𝑦)).
It recommends an institution 𝑥 for collaboration with program 𝑦 if
𝑥 poses no risk and has participated in related programs 𝑦′, where
programs are related if they share at least two keywords, andNorisk
is an oracle derived from external information.

Figure 4(s) shows the rule identified that the “Jingyi" recom-
mended by our knowledge graph, was at risk of being sold by their
parent company through a news announcement in the Announce-
ment of Listed Companies. This early detection allowed us to adjust
the team and keep the program on track.
Risk detection. We devised the rule GRO 𝜙 = 𝑄 [𝑧] (IsLoss(𝑧) →
TheftRisk(𝑧)) to detect heritage item theft risks. It states that if a
listed-for-sale heritage item is reported as lost, it is considered at
risk of theft. Figure 4(s) shows the rule found the "Heaven and Earth
Flow" wood carving being sold on "7788" and reported as stolen
on the website of “Stolen Cultural Relics Information Publishing
Platform of China”. We reported our findings to the Public Security
Bureau, and the heritage was successfully reclaimed.
Summary. We find the following. (1) GROs are highly effective in
association deduction. On average,GROs have precision above 97%.
And it achieves a recall rate of 72.5%, surpassing the performance
of the SOTA method with GARs [10] by 23.6%. (2) Algorithms
PDeduce scale well with the number 𝑛 of processors and large
graphs: their runtime is improved by 4.1 times on average when
𝑛 varies from 4 to 20, and it beats PGAR by 5.2 times on graphs
with 1.3 billion nodes and edges. (3) Incremental PIncDeduce beats
batch PDeduce by 2.1 times on average when |Δ𝐺 | is 10%|𝐺 | and
works better even when |Δ𝐺 | is up to 25%|𝐺 |. (4) The optimization
strategies are effective: it improves the performance of PDeduce
and PIncDeduce by 2.0 and 1.83 times on average, respectively.

8 RELATEDWORK
We categorize related work as follows.

Graph dependencies and association rules. Dependencies and associ-
ation rules are being investigated to catch semantic inconsistencies
and extract relations from graphs, respectively. Various graph de-
pendencies [13–15, 21], association rules [8, 10, 19, 20] and repairing
rules [5] have been studied for property graphs. These graph de-
pendencies and association rules are often defined in the form of
𝑄 [𝑥] (𝑋 → 𝑌), where 𝑄 is a topological pattern and 𝑋 → 𝑌 is an
attribute dependency (possibly empty). They are differentiated from
each other with the expressive power and complexity, as indicated
by the syntax of pattern 𝑄 and dependency 𝑋 → 𝑌 .

The novelty of this work consists of the following.

(1) This research incorporates both external and internal oracles into
graph rules. External oracles leverage knowledge from applications
or knowledge experts, while internal oracles enable computations
on the match of 𝑄 . Many practical operations, such as aggregates,
regular expression matching, fall within the PTIME complexity
class, making them suitable for efficient online oracles.

(2) Unlike traditional isomorphism and homomorphism seman-
tics, this work adopts simulation-based semantics for graph rules.
Simulation-based semantics relaxes constraints, reducing pattern

matching complexity from NP-complete to PTIME, enhancing the
applicability of graph rules in practical scenarios.

Relaxed pattern matching. Graph simulation, a more flexible match-
ing semantics with low polynomial complexity, was proposed
in [36]. Three representative extensions include dual simula-
tion [33], strong simulation [33], and bounded simulation [17].
The first algorithm for graph simulation is proposed in [28], and
a refined version improves it in quadratic time [11]. Incremental
algorithms have been studied for simulation [16, 17]. There have
also been parallel algorithms for graph simulation [18, 23, 24, 35],
strong simulation [33, 43] and dual simulation [24, 40].

These techniques are based on (1) distribute graph process-
ing models, e.g., [18] integrates partial evaluation and message
passing, [16, 23] parallelizes and incrementalizes the sequential
algorithm [28] under GRAPE, a graph-centric graph programming
model; [24] follows Pregel for simulation, and [40] computes dual
simulation on RDF data in GraphX; (2) data locality enhancement,
e.g., strongly connected components defined in [35] for simulation
matches to be within an AFF area identified in [17], a ball of maxi-
mum diameter of patterns [33] for strong simulation, and a ball of
maximal diameter 𝑑𝑄 of pattern trees [43] for strong simulation.

This work differs from the prior work in the following.
(1) Our sequential algorithm utilizes a smaller ball size compared
to the one used in strong simulation [33] to implement the pivoted
matching algorithm in an efficient manner.
(2) Our parallel algorithm introduces concepts such as necessary
affected area for border nodes and bounded necessary affected area
to reduce communication costs.
(3) Our incremental algorithm incorporates an association depen-
dency graph and a removal delay strategy to maintain the affectation
relationship for each association. This helps to minimize the num-
ber of times we need to recheck invalid associations that are affected
by an edge 𝑒 but remain valid due to other chasing sequences.

9 CONCLUSION
The novelty of the work consists of the following: (1) a class of
graph rules GROs for deducing associations that support oracles
to incorporate external knowledge and are defined in terms of a
revised notion of dual simulation; the rules depart from previous
rules in their ability to import external computations and its PTIME
complexity; (2) a sequential association deduction algorithm with
GROs in PTIME, and a parallel deduction algorithm with the paral-
lel scalability; and (3) a parallel incremental deduction algorithm
with the parallel scalability. Our experimental study has verified
that GROs are promising in real-life applications.

Future work includes the following three topics: (a) exploring
applications of GROs e.g., risk analysis, anomaly detection, public
opinion analysis, among others; (b) collecting oracles andML mod-
els for GROs; and (c) developing algorithms for discovering GROs.

ACKNOWLEDGMENTS
This work was supported by National Key R&D Program of China
(No. 2021YFC2600501), and National Natural Science Foundation of
China (61972275).

12

REFERENCES
[1] Dbpedia. http://wiki.dbpedia.org/Datasets.
[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,

1995.
[3] K. Andreev and H. Racke. Balanced graph partitioning. Theory of Computing

Systems, 39(6):929–939, 2006.
[4] F. Chen and D. B. Neill. Non-parametric scan statistics for event detection and

forecasting in heterogeneous social media graphs. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 1166–1175, 2014.

[5] Y. Cheng, L. Chen, Y. Yuan, and G. Wang. Rule-based graph repairing: Semantic
and efficient repairing methods. In ICDE, 2018.

[6] A. Cortés-Calabuig and J. Paredaens. Semantics of constraints in RDFS. In AMW,
2012.

[7] G. Fan, W. Fan, and F. Geerts. Detecting errors in numeric attributes. In WAIM,
2014.

[8] G. Fan, W. Fan, Y. Li, P. Lu, C. Tian, and J. Zhou. Extending graph patterns with
conditions. In SIGMOD, pages 715–729. ACM, 2020.

[9] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Conditional functional depen-
dencies for capturing data inconsistencies. TODS, 33(1), 2008.

[10] W. Fan, R. Jin, M. Liu, P. Lu, C. Tian, and J. Zhou. Capturing associations in
graphs. Proc. VLDB Endow., 13(11):1863–1876, 2020.

[11] W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching: From
intractability to polynomial time. PVLDB, 3(1):1161–1172, 2010.

[12] W. Fan, X. Liu, P. Lu, C. Hu, and Y. Cao. Discovering graph functional dependen-
cies. In SIGMOD, 2018.

[13] W. Fan, X. Liu, P. Lu, and C. Tian. Catching numeric inconsistencies in graphs.
In SIGMOD, 2018.

[14] W. Fan and P. Lu. Dependencies for graphs. In PODS, 2017.
[15] W. Fan, P. Lu, C. Tian, and J. Zhou. Deducing certain fixes to graphs. PVLDB,

12(7):752–765, 2019.
[16] W. Fan, C. Tian, R. Xu, Q. Yin, W. Yu, and J. Zhou. Incrementalizing graph

algorithms. In SIGMOD, pages 459–471, 2021.
[17] W. Fan, X. Wang, and Y. Wu. Incremental graph pattern matching. ACM Trans.

Database Syst., 38(3):18:1–18:47, 2013.
[18] W. Fan, X. Wang, and Y. Wu. Distributed graph simulation: Impossibility and

possibility. PVLDB, 2014.
[19] W. Fan, X. Wang, Y. Wu, and J. Xu. Association rules with graph patterns. PVLDB,

8(12):1502–1513, 2015.
[20] W. Fan, Y. Wu, and J. Xu. Adding counting quantifiers to graph patterns. In

SIGMOD, 2016.
[21] W. Fan, Y. Wu, and J. Xu. Functional dependencies for graphs. In SIGMOD, 2016.
[22] W. Fan, J. Xu, Y. Wu, J. Jiang, Y. Cao, C. Tian, W. Yu, B. Zhang, and Z. Zheng.

Parallelizing sequential graph computations. In SIGMOD, 2017.
[23] W. Fan, W. Yu, J. Xu, J. Zhou, X. Luo, Q. Yin, P. Lu, Y. Cao, and R. Xu. Parallelizing

sequential graph computations. ACM Trans. Database Syst., 43(4):18:1–18:39,
2018.

[24] A. Fard, M. U. Nisar, L. Ramaswamy, J. A. Miller, and M. Saltz. A distributed
vertex-centric approach for pattern matching in massive graphs. In ICBD, pages
403–411. IEEE Computer Society, 2013.

[25] S. P. Fraiberger, R. Sinatra, M. Resch, C. Riedl, and A.-L. Barabási. Quantifying
reputation and success in art. Science, 362(6416):825–829, 2018.

[26] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. W. H. Freeman and Company, 1979.

[27] P. H. Guzzi, M. Milano, and M. Cannataro. Mining association rules from gene
ontology and protein networks: Promises and challenges. In ICCS, 2014.

[28] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke. Computing simulations on
finite and infinite graphs. In FCS, pages 453–462, 1995.

[29] IMDb. http://www.imdb.com/stats/search/ .
[30] S. M. Kazemi and D. Poole. Simple embedding for link prediction in knowledge

graphs. In NeurIPS, 2018.
[31] M. Kim and K. S. Candan. Sbv-cut: Vertex-cut based graph partitioning using

structural balance vertices. Data & Knowledge Engineering, 72:285–303, 2012.
[32] C. P. Kruskal, L. Rudolph, and M. Snir. A complexity theory of efficient parallel

algorithms. TCS, 71(1):95–132, 1990.
[33] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation: Capturing topology

in graph pattern matching. ACM Trans. Database Syst., 39(1):4:1–4:46, 2014.
[34] S. Ma, Y. Cao, W. Fan, J. Huai, and T. Wo. Strong simulation: Capturing topology

in graph pattern matching. ACM Trans. on Database Systems, 39(1), 2014.
[35] S. Ma, Y. Cao, J. Huai, and T. Wo. Distributed graph pattern matching. InWWW,

pages 949–958. ACM, 2012.
[36] R. Milner. Communication and Concurrency. Prentice Hall, 1989.
[37] H. Myoungji, K. Hyunjoon, G. Geonmo, P. Kunsoo, and H. Wook-Shin. Efficient

Subgraph Matching: Harmonizing Dynamic Programming, Adaptive Matching
Order, and Failing Set Together. In SIGMOD, 2019.

[38] F. Sadri and J. D. Ullman. The interaction between functional dependencies and
template dependencies. In SIGMOD, 1980.

[39] D. Sánchez, M. A. V. Miranda, L. Cerda, and J. Serrano. Association rules applied
to credit card fraud detection. Expert Syst. Appl., 36(2):3630–3640, 2009.

[40] A. Schätzle, M. Przyjaciel-Zablocki, T. Berberich, and G. Lausen. S2X: graph-
parallel querying of RDF with graphx. In VLDB 2015 Workshops, volume 9579 of
Lecture Notes in Computer Science, pages 155–168. Springer, 2015.

[41] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: A core of semantic knowledge.
InWWW, 2007.

[42] T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G. Bouchard. Complex embed-
dings for simple link prediction. In ICML, 2016.

[43] H. Wang, N. Li, J. Li, and H. Gao. Parallel algorithms for flexible pattern matching
on big graphs. Inf. Sci., 436-437:418–440, 2018.

[44] P. T. Wood. Containment for XPath fragments under DTD constraints. In ICDT,
2003.

13

	Abstract
	1 Introduction
	2 Preliminaries
	3 Graph Rules with Oracles
	4 Deducing associations
	4.1 Chasing with GROs
	4.2 The Church Rosser Property

	5 Parallel deduction
	5.1 Parallel scalability Revisited
	5.2 A sequential algorithm
	5.3 A parallel scalable algorithm

	6 Incremental Deduction
	7 Experimental Study
	8 Related work
	9 Conclusion
	Acknowledgments
	References

