

A Reinforcement Learning Approach for Graph Rule Learning

Zhenzhen Mai, Wenjun Wang, Xueli Liu*, Xiaoyang Feng, Jun Wang, and Wenzhi Fu

Abstract: We study the problem of learning rules for graphs. Traditional methods often suffer from large search

spaces due to the enumeration of all candidate rules. Although some recent neural logic methods are more

efficient in learning rules, they are generally restricted to learning chain-like rules with limited expressiveness.

Taking the advantage of Reinforcement Learning (RL) in reducing search space, we implement a policy

network based RL method for learning graph rules, denoted as GraphRulRL. In our research, we convert graph

rules into sequences of edges, transforming the task of graph rule learning into a process of sequentially

adding edges that can be solved by RL. Specifically, GraphRulRL follows a two-stage framework. In the first

stage, we train a policy network for graph rule learning, which evaluates graph rules using support with anti-

monotonicity as rewards during training. In the second stage, we integrate the well-trained policy network with

beam search for iterative searching to generate graph rules. Experimental results prove the effectiveness of the

proposed method.

Key words: graph rules; Reinforcement Learning (RL); rule learning

1　Introduction

Q (x, y) ⇒ q (x, y) Q (x, y)
x y

A variety of rules has been studied for graphs, and
implemented in various domains, including error
detection[1, 2], entity resolution[3], and user
recommendation[4]. Rules on graphs usually have more
complex structures than relational rules. For instance,
Graph Pattern Association Rules (GPAR)[4] are defined
as , where is a graph pattern
in which and represent two designated nodes, and

q (x, y) q x y
x y

Q Q (x, y)
q (x, y)

 is an edge labeled from to , on which the
search conditions imposed on and are the same as
in . can be regarded as the rule body, and

 is the rule head that is derived from the
conditions in rule body.

To make practical use of graph rules, many
researches have made significant efforts in discovering
rules from real-life data. Traditional methods[4–6]

follow the level-wise search paradigm to mine graph
rules, requiring enumeration and verification of
candidate rules in an exponential space. Although they
typically employ different pruning strategies to reduce
search space, the subgraph matching that is used to
evaluate candidates (i.e., check whether it satisfies the
support threshold) still leads to exponential
computational costs. With the significant
breakthroughs in deep learning, some researches[7–10]

have applied neural networks for rule learning tasks.
For instance, path-based methods[7] enumerate all
relational paths on a graph as candidate rules, and then
learn a weight for each rule to evaluate its quality.
There are also neural logic programming methods[10]

 Zhenzhen Mai, Xueli Liu, Xiaoyang Feng, and Jun Wang are

with College of Intelligence and Computing, Tianjin University,
Tianjin 300072, China. E-mail: maizz2020@tju.edu.cn;
xueli@tju.edu.cn; iexyfeng@tju.edu.cn; jun.wang@tju.edu.cn.

 Wenjun Wang is with College of Intelligence and Computing,
Tianjin University, Tianjin 300072, and also with Yazhou Bay
Innovation Institute, Hainan Tropical Ocean University, Sanya
572022, China. E-mail: wjwang@tju.edu.cn.

 Wenzhi Fu is with School of Informatics, University of
Edinburgh, Edinburgh EH89YL, UK. E-mail:
wenzhi.fu@ed.ac.uk.

* To whom correspondence should be addressed.
 Manuscript received: 2024-05-14 ; revised: 2024-09-24;

accepted: 2024-10-05

BIG DATA MINING AND ANALYTICS
ISSN 2096-0654 03/14 pp31−44
DOI: 10.26599/BDMA.2024.9020070
Volume 8, Number 1, February 2025

© The author(s) 2025. The articles published in this open access journal are distributed under the terms of the

Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

that can learn both rules and weights simultaneously.
However, these methods also need to learn rules in a
large search space and struggle to identify high-quality
rules. Some approaches[11, 12] adopt Reinforcement
Learning (RL) to search for rules, which can greatly
reduce the complexity of search space by avoiding bad
decisions in early stage of rule generation. But they
mainly focus on learning chain-like rules, which have
limited expressive ability.

ρa ρa

ρb

However, mining graph rules from real-life data is
more challenging due to their complex structures. As
shown in Fig. 1, the edges in the rule body of (is
a chain-like rule) naturally has a sequential order, while
the structure of the rule body for graph rule is more
complex and unordered. Considering the advantages of
RL in reducing search spaces and handling sequence
decision-making problems, the key issue is how to use
RL method for graph rules learning.

Considering the unordered nature of edges in the rule
body of graph rules, using RL for graph rule learning
needs to consider several issues. Firstly, how to convert
graph rules into sequence rules so that the task of graph
rule learning can be transformed into a sequential
decision-making process that can be solved by RL?
Secondly, how to evaluate the learned graph rules?
Finally, how to avoid generating redundant rules
during the whole learning process? Here, redundant
rules refer to those that have the same consequence
(i.e., the same rule head) and isomorphic patterns (i.e.,
rule bodies).

For the first issue, we consider adopting the Depth-

First Search (DFS) code defined in gSpan[13] to convert
graph rules into ordered edge sequences. To generate
new rules, the process typically involves starting with a
given rule head and gradually adding edges to the rule
body. We take each graph rule as DFS codes, and the
new graph rule is generated by extending the current
DFS codes with an edge, that is extracted from the data
graph by calculating the matches of the current DFS
codes, and then extending the matches with one-edge
growth from nodes on the rightmost path. Here the
right most path denotes the path between the nodes
with the smallest and largest ids of the current DFS
codes (i.e., graph rules).

For the second issue, we use the statistical metric
support[14, 15] to evaluate graph rules. Support usually
refers to the frequency of the rule applied on the graph.
Such a definition of support often lacks anti-
monotonicity, which means that as more conditions
(i.e., edges) are added to a rule, the frequency or
significance of the rule being satisfied remains the
same or decreases. Since new rules are generated by
adding new edges to the rule body, the new rules need
to satisfy monotonicity. Therefore, we take support
with anti-monotonicity as the reward of RL to evaluate
graph rules.

For the third issue, we intend to identify and prune
redundant rules, which are generated due to the
different orders of adding edges, by comparing the
minimum DFS codes of rule bodies for graph rules.
Therefore, we can prune redundant rules by avoiding
expanding new rules upon them.

With these strategies mentioned above, we propose a
method that can learn graph rules with RL, denoted as
GraphRulRL. Our main contributions include:

(1) By transforming graph rules into ordered
sequences of edges, we formalize the process of
learning graph rules into a sequential decision-making
problem that can be solved by RL.

(2) We train a policy network of RL for graph rule
learning, in which it designs a reward function that
takes support with anti-monotonicity as evaluation.
Considering the anti-monotonicity of rules helps
reduce search space.

(3) We embed the trained policy network into the
beam search process, aiming to generate as many high-
quality graph rules as possible.

(4) Validation of the obtained rules are conducted to
demonstrate the effectiveness of the proposed method.

Scholar scholarColleague
y xx x′

yzzCollege

Scholar

College City

City WCollege v

Colleague

Fo
llo

w

Fo
llo

w

Follow

Fo
llo

w

Follow

Scholar

Live in
Live in

Live in

Live in

Scholar Scholar

(a) Rule ρa (b) Rule ρb

(c) Graph G0

ColleagueColleague u1 u2
u0

Scholar

ρa

ρb

Fig. 1 Examples of rules and graphs. is a chain-like rule,
and is a graph rule. The solid lines in a rule construct the
rule body, and the dashed line represents the rule head.

 32 Big Data Mining and Analytics, February 2025, 8(1): 31−44

The rest of the paper is structured as follows. In
Section 2, we introduce the related works. Some
preliminaries and notations are presented in Section 3.
Section 4 elaborates on the overall framework of
GraphRulRL in detail, including the training process of
the policy network and the generation of graph rules.
Section 5 reports the experimental results, and
conclusions are drawn in Section 6.

2　Related Work

Rule learning. There have been several methods for
discovering rules from graphs. Traditional approaches
follow a level-wise search paradigm for rule mining,
which usually requires enumerating and validating
rules in an exponential space. For example, GFDs[5],
GPARs[4], and GARs[6] can mine graph rules by
adopting different pruning strategies to improve
efficiency. Some recent researches apply neural
networks for rule learning, in which they usually learn
the weights of logic rules efficiently for quality
evaluation. PRA[7] samples paths by using random
walk with restart strategies from the data graph to infer
chain-like rules. DeepPath[11] formulates the path-
finding problem as a sequential decision-making
problem with RL. The path-based methods aim at
learning chain-like rules. Some graph-based methods,
like GraIL[16] and CoGraph[8], extend the path-based
methods and allow the interpretation to be structured as
graphs, thereby providing richer expressiveness. The
matrix-based methods[10, 17, 18] use matrix operations to
describe the logical relationships between entities.
TensorLog[10] and NeuralLP[17] focus on learning
chain-like rules. NLIL[18] constructs a more compact
framework for rule-learning by stacking three
transformer networks, and can tackle the non-chain-
like rules, which suffers the complexity of models.

In this paper, we formulate the learning of graph
rules into a sequential decision-making problem that
can be solved by RL. It is a heuristic method that
combines beam search with a policy network to
generate as many high-quality graph rules as possible.

Reinforcement learning. Some researchers apply
reinforcement learning for rule learning, benefiting
from its ability to explore and make optimal decisions
in large search spaces. These methods[11, 19] typically
model path-based approaches as sequential decision-
making processes to learn chain-like rules. However,
the reward signal is very sparse, making it difficult to
train an effective path-finding agent. Some studies[20]

attempt to obtain better rewards by using embedding-
based methods for reward shaping. In our research, we
design a new reward mechanism to train the network
for graph rule learning, aiming to achieve better
performance.

3　Preliminary

Θ

In this section, we review some basic notations.
Assume a countably infinite set denotes the node and
edge label in graphs.

3.1　Graph rules

G (V, E, L)
V E ⊆ V ×V

(v, v′)
v v′ v ∈ V

L (v) ∈ Θ
e L (e) ∈ Θ

Graphs. We consider directed graphs = ,
where (1) is a finite set of nodes; (2) is a
set of edges, in which denotes an edge from
node to ; and (3) each node is labeled

, indicating its label or content, e.g., scholar
and college, and each edge is labeled ,
indicating its label or content, e.g., “follow” and “live
in”, as found in property graphs, social networks, and
knowledge bases. G0 in Fig. 1c shows a simple social
network.

Q [x̄] = (VQ, EQ, LQ, µ) VQ

EQ

LQ Θ

LQ (u) u ∈ VQ

LQ (e) e ∈ EQ x̄
VQ µ

x̄ VQ

v VQ x ∈ x̄
µ (x) x

Patterns. A graph pattern is defined as a graph
, where (1) is a finite set of

pattern nodes, and is a finite set of pattern edges;
(2) is a function with range in that assigns a node
label for each , and assigns a edge label

 for each ; and (3) is a list of distinct
variables, each denoting an entity in ; (4) is a
bijective mapping from to , i.e., it assigns a
distinct variable to each node in . For , we
use and interchangeably when it is clear in the
context.

ρa

x y z

ρa Q
ρb

Example 1: In the rule body of in Fig. 1, it
contains three pattern nodes, i.e., , , and , and each
node has its own label. According to the definition of
pattern, we can take the rule body of as a pattern .
Similarly, for the rule body of graph rule .

Q [x̄] G h
Q G′ G

u ∈ VQ LQ (u) = L (h (u)) (u, u′)
Q (h (u), h (u′)

G′ f (u, u′) L (h (u), h (u′) G′

Q

Pattern matching. We adopt the isomorphism
semantics of pattern matching. A match of pattern

 in graph is a bijective function from nodes of
 to the nodes of a subgraph of , such that for

each node , ; and is
an edge in if and only if is an edge in

, and = . We say that
matches .

G′ h (x̄)
h (x) x ∈ x̄ x̄

x̄ h (x̄)

We denote the match as a vector , consisting
of for all in the same order as . Intuitively,

 is a list of entities to be identified, and is an

 Zhenzhen Mai et al.: A Reinforcement Learning Approach for Graph Rule Learning 33

x̄ Ginstantiation of in , one node for each entity.
Q (G) Q G

u Q (u, G)
u Q (G) Q (u, G)

v G h
G′ ∈ Q (G)

Q v ∈ G′ h (u) v

We denote by the set of all matches of in .
For each pattern node , we use to denote the
set of all matches of in , i.e., consists
of nodes in , such that there exists a function
under which a subgraph is isomorphic to

, and = .

ρa ρb Qa Qb

Qb G0 Qb (G0)
x 7→ u0 x′ 7→ u1 y 7→ w z 7→ v Qb (x, G0)

u0

Example 2: For convenience, we denote the rule
bodies of and in Fig. 1 as patterns and ,
respectively. For and , a match in is

, , , and . Here
includes .

φ

Q [x̄]→ q (x, y) Q [x̄] φ

q (x, y) q x y x
y x̄ Q q

φ

Q

Q q
φ

Graph rules. A graph rule is defined as
, where (1) is a pattern of ; and

(2) is an edge labeled from to , where
and are two designated nodes in . We refer and
as the rule body and rule head of , respectively. In
such a definition, each pattern edge of can be
considered as a predicate, and all the edges in the
pattern form the rule body. Similarly, is a
predicate, serving as the consequence of .

ρa

φa : Qa (x̄) → (x, z)
x z x y
y z

Example 3: For in Fig. 1, it can be expressed as a
graph rule Follow , where it
indicates that works for when and are
colleagues, and works for college .

ρb φb : Qb (x̄)
→ (x, x′) x x′

z y x
x′

For , it can be expressed as a graph rule
 Colleague . It says that if and both work

for college , and they live in the same city , then
and are colleagues.

φ

Q

h (x̄) Q q (h (x), h (y)) h (x̄)
Q

Compared to chain-like rules, such logic rule
exhibits a higher level of expressive capability since
pattern possesses more complex structures. By
employing pattern matching algorithm to obtain match

 of , we can deduce . Match is
an instantiation of pattern on the graph.

φ :
Q [x̄]→ q (x, y) G

φ G
φ

Q [x̄]→ q (x, y) G

Support. The support of a graph rule
 in graph should represent the

frequency that can be applied to . We adopt the
definition in Ref. [4], where it defines the support of :

 in graph as

support (φ, G) = ∥Pφ (x, G)∥ (1)

φ Pφ (x ,y)
x y φ

x y Pφ (G) Pφ (G)
Pφ G

where is treated as pattern with designated
nodes and . It quantifies support of a rule in terms
of the number of distinct matches of two designated
nodes and in , and is the set of all
matches of in .

φt

One can verify that this support measure has anti-
monotonicity. Specifically, if two rules =

Q [x̄]→ q (x, y) φt+1 Q [x̄′]→ q (x, y)
q (x, y) φt

φt+1 φt ⪯ φt+1 Q [x̄] ⊑ Q [x̄′]
φt φt+1

(φt, G) ⩾ (φt+1, G)

 and = with the
same consequence , we say that has a lower
order than , denoted by if .
That is, is less restrictive than , and
support support . The anti-
monotonicity requires that when more conditions are
added to a rule, the frequency of the rule being satisfied
does not increase but remains the same or decreases.

3.2　DFS codes of graph

(u, v, (lu, le, lv))
u v

lu ∈ Θ lv ∈ Θ
u v le ∈ Θ

u v (lu, le, lv)

DFS codes in gSpan[13] describes a graph in an ordered
sequence of edges by performing a depth-first search
on it. This sequence is composed of a list of five-
tuples, i.e., . Each five-tuple represents
an edge, in which is the source node id, and is the
target node id, and denote the vertex
label of and , respectively, and is the edge
label between and . We also denote as a
label triplet that many edge instances of the data graph
have been conformed to.

ρa

ρa

(x
y) ρa (0 1

(1 2
(y z)

ρa (0 1
(2 0

Example 4: We take in Fig. 1 as an example. For
clarity, we only consider the rule body of , i.e., the
solid lines. If the searching starts from , Colleague,

, the DFS codes of contain , , (Scholar,
Colleague, Scholar)) and , , (Scholar, Follow,
College)). If it starts from , Follow, , the DFS
codes of contain , , (Scholar, Follow, College))
and , , (Scholar, Colleague, Scholar)).

G

≺e

A (a0, a1, . . . , am) B (b0, b1, . . . , bn)
A ⩽ B

Different traversal orders of nodes and edges can
produce multiple DFS codes for a graph . To address
this issue, the author defined a DFS Lexicographic
Order to compare each pair of DFS codes. Suppose
there is linear order () for the lexicographic
combinations of node ids, node labels and edge labels
(please refer gSpan[13] for detailed definition). DFS
Lexicographic Order is a linear order defined as
follows. If = and =
are two states, then if either of the following is
true:

∃t, 0 ⩽ t ⩽min (m, n) ∀k < t ak bk at ≺e bt(1) , , = , ,
∀0 ⩽ k ⩽ m ak bk n ⩾ m(2) , = , and .

G

G G′

G G′

Among all possible DFS codes of graph , the
minimum code is the one with the minimum
lexicographical order with the same elements. If two
graphs and have the same minimum
lexicographical order, then is isomorphic to . By
comparing the minimum lexicographical order, it can
effectively identify graphs or patterns that are
isomorphic.

 34 Big Data Mining and Analytics, February 2025, 8(1): 31−44

3.3　Markov decision process for rule learning

In RL, the Markov Decision Process (MDP) is an
important framework used to describe the problem of
an agent learning the optimal behavior policy by
interacting with an environment.

⟨S, A, P, R⟩
S A {a1, a2, . . . , an}

P (S t+1 = s′| S t s, At

a)
s a s′

R (s, a) (s, a)

In general, MDP is modeled as , where
 is a continuous state space, =

is a set of all possible actions, = =
 is a state transition function that deterministically

maps the state and action to the next state .
 is the reward function for each pair.

ρa x z
x y
x y

→ x z
y z x y

∧ y z → x z

Some studies[11, 19] adopt MDP to learn chain-like
rules. Typically, it starts with a given predicate as the
rule head, progressively adding predicates to construct
the rule body, where predicates are edge labels. Take

 in Fig. 1 for instance, given the predicate Follow (,)
as rule head, it first adds the predicate Colleague (,)
to the rule body, deriving a partial rule Colleague (,)

 Follow (,); then it adds another predicate
Follow (,) to form a complete rule Colleague (,)

 Follow (,) Follow (,). Therefore, the whole
process can be modeled as a MDP, with a reward to
measure the quality of each step.

Chain-like rules can be seen as closed paths, and
learning chain-like rules using RL methods is
equivalent to the process of finding closed paths in a
graph. Additionally, the edges (i.e., predicates) within
the body of a chain-like rule have a sequential order,
meaning each newly added edge must follow directly
after the previous one.

4

However, for graph rules with complex structures,
the aforementioned process cannot be applied directly.
How to utilize MDP to describe the modeling process
of graph rules is a key focus of our research, which will
be elaborated in Section .

4　Methodology

(lu, le, lv)
(0, 1, (lu, le, lv))

Our goal is to generate graph rules by sequentially
adding edges to the rule body, starting with an edge
label as the rule head. A graph rule can be converted to
DFS codes, and then adding all possible edges to the
current DFS codes for expanding new rules, in which
these edges can be obtained by enumerating all the
matches of the current DFS codes and then expanding
the matches with one-edge growth from nodes on the
rightmost path of matches. More specifically, when
given a label triplet , we encode it into

 as the rule head, upon which new
edges added to it are all part of the rule body. Then we

(0, 1, (lu, le, lv))enumerate the matches of in the data
graph and find the possible edges (i.e., actions) that can
be added to it. With these available edges (i.e.,
actions), we adopt the policy network of RL to evaluate
the quality of these edges and add a high-value edge to
the rule body to form a new rule. When a new rule is
evaluated as effective, it continues expanding upon the
new rule by exploring the data graph for possible edges
and using the RL agent to evaluate these edges. Figure
2 illustrates the framework of our method.

e0 (0 1
e0 G0

(0 2
(0 2

(1 2 (1 2
e1

(1 2

e1 → e0 [e0,e1]

e2 (0 2

e1 ∧ e2 → e0

[e0, e1, e2]

Taking the graph rule in Fig. 1 for instance, we set
the pattern edge (Scholar, Colleague, Scholar) as the
rule head, denoted as = , , (Scholar, Colleague,
Scholar). By exploring the matches of in , we get
four possible expanding edges, including , ,
(Scholar, Follow, College)), , , (Scholar, LiveIn,
City)), , , (Scholar, Follow, College)), and , ,
(Scholar, LiveIn, City)). Then, adding a new edge =

, , (Scholar, Follow, College)) to the rule body if
this edge has a high value by RL agent, it forms a rule

 , and the edge sequence of the rule is . If
this rule is proven to be effective using support, we can
expand new edges upon it. After exploring the data
graph, we find that another new edge = , ,
(Scholar, LiveIn, City)) can be added to the rule body,
forming a new rule , with an edge
sequence . We can generate new rules by
adding new edges to the rule body of this rule, as long
as this rule is validated as effective.

It is obvious that each graph rule is in the form of
DFS codes, which is constituted by a sequence of
multiple five-tuples. We take graph rules as states, and
the edges that can be added to the state are actions.
Consequently, we formulate the problem of graph rule
learning as a MDP that can be solved by RL and
propose an approach GraphRulRL for graph rule
learning. GraphRulRL consists of two parts: (1)
training of the policy network of RL, and (2) the rule
generation guided by the trained policy network. In the
rest of this section, we will describe the components of
the MDP in detail first. Then we outline the training
process of the policy network, and present an algorithm
that can generate graph rules with the trained policy
network subsequently. The symbols used in
GraphRulRL are shown in Table 1.

4.1　MDP components

Here, we will give the definitions of actions, states, and
rewards for the MDP components in graph rule
learning, respectively.

 Zhenzhen Mai et al.: A Reinforcement Learning Approach for Graph Rule Learning 35

4.1.1　States and actions

(0 2
m (lu, le, lv)
|A| (A2

N −1)×m
N

Action. As the mentioned expansion process, each
five-tuple represents an action. A five-tuple specifies
not only the type of the edge but also its position in the
rule, such as , , (Scholar, LiveIn, City)). Assuming
there are label triplets in the data graph,
the size of actions space is if the
maximum number of nodes of a graph rule is . Due to
the large size of the actions space, we obtain available

G

edges by interacting with the data graph directly when
expanding for new rules upon existing rules. To
accelerate the efficiency of searching possible edges,
we follow the expansion principle defined in gSpan[13],
which is only to expand the matches of current graph
rule in the data graph with one-edge growth from
nodes in the rightmost path. The rightmost path is the
path between the nodes with the smallest and largest
ids of the current graph rule. This approach helps to

State st Enviroment

Data graph G

DFS codes of st

Available actions

A (st)={a1, a2, …, am}

a1

am

a1a2

am

a2

a|A|

… …

…

for state st

Encoder

State vector

vecst

vecrhead

Policy
network

Actions distribution

Take action

Reinforcement learning module

Observe state st

support (st) > support (st+1)?

Get matches
of st in G

Expand matches with
one-edge growth
from nodes onthe

rightmost path

Reward

State st+1

Evaluate: st+1

st

G
A (st) st st G

st svt
vecst vecrhead

A (st) A (st)
k A (st)

Fig. 2 Overview of our method, which is based on the framework of RL. It converts the state (i.e., a graph rule) learned
from the environment (i.e., data graph) into a sequence of edges encoded by DFS codes, and obtains an available actions set

 for from the environment by getting matches of in and expanding matches with one-edge growth on nodes in the
rightmost path. Meanwhile, it transforms state into a vector using the encoder, and sets state vector as input of policy
network by concatenating and . The policy network outputs distributions of all actions, and then the values of
available actions can be obtained. During the training phase, an action is randomly chosen from . In the
generation phase of graph rules, top- actions are selected from the sorted probabilities of .

Table 1 Specifications for symbols used in GraphRulRL.
Notation Type Description

at tuple (u, v, (lv, le, lv))A five tuple that represents an action (i.e., edge)
st list A list of five tuples that represents a state (i.e., a graph rule)

rhead tuple st [0] stThe first tuple of represents the rule head
R (st, at) float at st tA return value evaluated by the environment (i.e., data graph) when an action is taken at state at step
support float GA statistical measure that counts the frequency of a graph rule applied to graph
vecst vector stVector representation of state
vecrhead vector rhead st [0]Vector representation for the rule head (i.e.,)

E set GSet of all frequent label triplets in the data graph

Mpos Mneg and set Sets of positive samples and negative samples, respectively
MinDFSset set Set of minimum DFS codes of patterns for the graph rules
max_step float A number that limits the size of graph rules, i.e., the number of edges that can be added to the rule body

availActionlist set G stA set of all possible edges explored from data graph that can be added to current state
beam_width float A number that controls the size of beams in each iteration.

 36 Big Data Mining and Analytics, February 2025, 8(1): 31−44

reduce search space, facilitating the construction of
graph rules quickly and efficiently.

st

[e0, e1 e2]

st

State. Each state is essentially a graph rule, as
well as DFS codes constituted by a list of edges. As
mentioned above, the edge sequence , is a
state, in which the first element in the edge sequence
represents the rule head and the rest are the rule body.
Since each element within an edge sequence is discrete,
the graph rule cannot be directly used as input for the
policy network. To address this issue, we employ
representation learning techniques for modeling graph
rules. Given that a graph rule is a sequence of edges, it
can be modeled by Long Short-Term Memory
(LSTM)[21] network. Simultaneously, as the sequence
of edges also can be regarded as a pattern, Relational
Graph Convolutional Networks (RGCN)[22] can be
considered for modeling graph rules as well. Therefore,
we will describe how these two models encode
respectively.

(1) Encoding with LSTM
st

V X Y

B B
d ∈ {0, 1, . . . ,B−1}

de

(B · (2· ⌈logB (Max (|V |))⌉ + 2 · ⌈logB (Max (|X|))⌉ +
⌈logB (Max (|Y |))⌉))

st

length (st) × de length (st)

Since state is composed of a sequence of five-
tuples, it is necessary to convert each five-tuple into a
vector. We follow the sequence encoding method in
Ref. [23]. Assuming the maximum values for node ids,
node labels, and edge labels are , , and in the
dataset, respectively, it converts each node id, node
label, and edge label into -nary digits, where is the
base, and each digit . Then, it
represents each digit as a one-hot vector, allowing each
id or label to be vectorized as a multi-hot vector, i.e.,
the concatenation of these one-hot vectors.
Additionally, these five multi-hot vectors can be
concatenated to represent a five-tuple. The length

 of the multi-hot vector for a five-tuple is

. After obtaining the multi-hot
vector for each five-tuple in the state , the state can
be encoded into a multi-hot matrix, in which the size of
the matrix is (), and is the
number of five-tuples in the state.

st

vecst

Based on the above encoding method, we can simply
convert state into a multi-hot matrix. Then, the
multi-hot matrix is fed into an LSTM, and the final
hidden state is taken as the representation of the entire
rule, denoted as .

(2) Encoding with RGCN
st

st

Since state can be taken as a graph, we also use
RGCN to encode . In a graph model, each vertex is
associated with a feature vector, and each edge is

st

vecst st

utilized to transmit information from its source vertex
to its target vertex. Following the encoding method of
the five-tuples mentioned above, we vectorize vertex
labels into multi-hot vectors, serving as vertex features.
RGCN designs a dedicated transformation matrix for
each relation, enabling the network to learn and reason
about different types of relationships. After processing

 with RGCN to obtain aggregated representations for
each node, an average pooling is applied to generate
the final representation for .
4.1.2　Rewards

at

st R (st at)
at

st

st+1 st st+1

st+1

st

st+1

at st

In general, rewards refer to the feedback or return that
an agent receives after performing a certain action at
state with RL, denoted as , . During the
process of expanding graph rules, an action is
executed at the current state to generate a new state

. Therefore, both and are graph rules and
share the same rule head, and is extended by
adding a new edge to . However, it is necessary to
assess the effectiveness of , that is, whether a
positive reward can be obtained when choosing action

 at state .
st st+1 φt

φt+1 φt Q [x̄]→ q (x, y) φt+1

Q [x̄′]→ q (x, y) φt ⪯
φt+1 q (x, y)
Qt [x̄] ⊑ Q [x̄′]

(φt, G) ⩾
(φt+1, G)

Suppose that and are equivalent to and
, respectively. Let = and =

. Consequently, we can find that
 since they have the same consequence and

 . According to the definition of support
in Section 3.1, it has support
support .

st+1

st+1

In this case, we evaluate with support. It returns
reward depending on the evaluation results of .
Therefore, we set the following reward function:

R (st, at) =
−1, otherwise;

1, if support (st+1, G) is valid
(2)

tFor each successful expansion step , a positive
reward is given.

4.2　Agent training

We train the RL agent directly through trial-and-error
results with rewards. This section will elaborate on the
training details of the RL agent, including the model of
policy network, and the procedure of training policy
with rewards.
4.2.1　Policy network

st

st

Since state is a sequence of edges, we adopt the
method mentioned in Section 4.1.1 to encode .

vecst st

t
After obtaining the representation of , the

state vector at step is given as follows:

 Zhenzhen Mai et al.: A Reinforcement Learning Approach for Graph Rule Learning 37

svt = (vecst , vecrhead) (3)

vecst st

vecrhead
vecst vecrhead
st

svt st

rhead

where is the representation of encodes by
LSTM or RGCN, and is the representation of
the rule head. In the initial state, = . It is
important to note that the state does not include
specific entities from the data graph; it only involves
the labels of entities and edges. Representing the state
vector by concatenating the representation of and
rule head is beneficial for capturing semantic
information between rules.

π(a|s;θ)
vecst

Then we employ a fully connected neural network to
parameterize the policy function , which maps
the state vector to the probability distribution over
all possible actions. The neural network comprises two
hidden layers, each followed by a Rectified Linear Unit
(ReLU) layer. The output layer utilizes the softmax
function for normalization.
4.2.2　Training with rewards

π (a|s; θ)

θ

t θ

Our goal is to learn a policy that enables us to
generate high-quality graph rules under its guidance,
where is the learned parameters. By maximizing the
expected cumulative rewards from any given time step
, the target function of is

J (θ) =Ea∼π (a|s; θ)(
∑

t

R (st, at)) =∑
t

∑
a ∈ A
π (a|s; θ)R (st, at) (4)

π (a|s; θ)
Using the Monte-Carlo Policy Gradient[24] to

optimize ,

∆

θJ (θ) =

∆

θ

∑
t

logπ (a = at |st; θ)Rtotal (5)

Rtotal twhere is the cumulative reward at time step .
θ

G
st

st G

st+1

To update the parameters , we train the policy
network with Algorithm 1. All the parameters are listed
in Table 1. The procedure .Action extracts possible
actions that can be added to the state from the data
graph by getting matches of state in and
expanding the matches with one-edge growth on nodes
in the rightmost path. And the procedure MinDFScode
calculates the minimum DFS codes of the bodies for
the state .

(lu, le, lv) rhead

7 18
t

st+1

Specifically, taking a randomly given label triplet
 as the rule head , new rules are generated

through the sequential expansion of actions (i.e., edges)
(Lines −), where each iteration of the expanding
process is regarded as an episode. At each step , it
builds a new rule upon the previously obtained

st at

at

st at

Mpos
Mneg

st at

Rtotal

rule with action , until reaching the max_step. The
action is randomly selected from availActionslist
(Line 8) which extracts possible actions from the data
graph with the rightmost expansion principle in
Ref. [13]. To ensure the validity of new rules, it needs
to evaluate the rules with support (Line 13). We also
maintain a set MinDFSset to collect the minimum DFS
codes of the patterns for the effective rules. Here
minimum DFS codes is used to prune redundant rules
during training. Then a positive sample (,) is added
into and a positive reward is given if the
conditions are satisfied (Lines 13−15); otherwise,
gets a negative sample (,) (Line 17), and the graph
rule remains in its state before expansion. Expansion
stops if the current expansion step reaches max_step.
At the end of each episode, we update the policy
network using Eq. (5) with positive and negative
samples obtained, and are defined as follows:

Algorithm 1　Training with reward functions
εInput: Data graph G, max_step and
πθOutput: Learned policy parameters

θ ←1: init_parameters (); MinDFSset = ();
←2: E Collect all frequent label triplets in G;

← 1 N3: for episode to do

Mpos ← ∅ Mneg ← ∅4:　　 ; ;
rhead← E5:　　 .random ();

← rhead)　　 supp support (;
st ← rhead6:　　 ;

← 0 　　num_step ;
<7:　　while num_step max_step do

st8:　　　availActionslist = G.Actions ();
a ←9:　　　 random.choice (availActionslist);
st+1 ← st a10:　 + [];

← st+1 　 mincode MinDFScode ([1:]);
(rhead,11:　 if mincode) in MinDFSset then

12:　　　　Continue;
(rhead, ε ⩽

st+1

13:　 　els if mincode) not in MinDFSset and
　　　　support () then

← st+114:　　　　supp support ();

Mpos st a 　　　　 .Add (,);
st ← st+115:　　　　 ;

rhead, 　　　　MinDFSset.Add ((mincode));
16:　　　else

Mneg st a17:　　　　 .Add (,); // The step fails
18:　　　Increment num_step;

θ Mneg19:　　Update with ; // penalize failed steps
θ Mpos20:　　Update with ;

πθ21: return

 38 Big Data Mining and Analytics, February 2025, 8(1): 31−44

Rtotal =

{
−1, if Mneg , ∅;
length (Mpos), if Mpos , ∅

(6)

Rtotal

θ

L2

where is the total reward obtained in an episode.
In practice, is updated using the Adam optimizer,
with regularization applied.

4.3　Generating graph rules

π (a|s; θ)

π (a|s; θ)

π (a|s; θ)

Since the goal for the rule learning tasks is to discover
as many high-quality rules as possible, it is inevitable
to explore the entire rule search space. We employ the
well-trained policy network to guide the rule
search procedure to find high-quality graph rules
efficiently by avoiding bad decisions at an early state
of graph rule generation. The policy network
can generate a probability distribution over all possible
actions when given a state, enabling the guidance of
the search process by selecting a few certain actions
with higher probabilities. Algorithm 2 describes the
process for high-quality rules by combining
with beam search.

G π (a|s; θ)
The algorithm takes the environment (i.e., data graph
) and the well-trained policy network as

Σ

1

st

G 8
π (a|s; θ)

k
9

Σ

Σ

input, and outputs a set of graph rules obtained
through the iterative process. We first identify all the
frequent label triplets in the graph (Line), and find
corresponding rules that take each label triplet as rule
head with beam search by iterative deepening (Lines
2−18). During each expanding process, we obtain
available actions for the current state through
interacting with the data graoh (Line), then use the
policy network to evaluate these actions, and
select the top- actions with the highest probabilities
for expansion (Line). Consequently, it generates a
sequence of graph rules that have the same rule head
and number of edges, but different patterns. Then, we
filter out rules that have the same minimum DFS codes
in patterns and add high-quality rules into by
evaluating them with support (Lines 13−16). In this
case, the list currentRules contains all the high-quality
graph rules at the current expanding step. Then, it sorts
rules in currentRules by their support values and
selects beam_width rules for the next expansion step.
The process is repeated until it reaches max_step. All
the graph rules are included in .

2With Algorithm , we can generate as many high-
quality graph rules as possible. The use of the policy
network effectively reduces the search space, and
redundant rules can be pruned by checking the
minimum DFS codes of graph rules.

5　Experimental Study

In this section, we evaluate the effectiveness of the
proposed method.

5.1　Experimental settings

Datasets. We conduct evaluations on three datasets,
including Kinship[25], FB15k-237[26], and YAGO3-
10[27]. Table 2 provides the statistical information of
the datasets.

Compared algorithms. In our experiments, we
compare five neural-based rule learning methods,
including NeuralLP[17], Drum[28], RNNLogic[29],
NCRL[30], and Rlogic[31]. These methods focus on
learning chain-like rules, and can be used for reasoning

Algorithm 2　Rule generating with policy network
G πθ ε kInput: Data graph , , , max_step, beam_width, and top-

ΣOutput: Set of graph rules
Σ ← ∅1: ;

E ← G collect all frequent label triplets in ;
e ∈ E2: for each label triplet do

rhead ← e3:　　 set as a rule head;
rhead rhead4:　　supp = support (); beam = [(, supp)];

i5:　　for in range(max_step) do
6:　　　currentRules=list ();
 　　　 MinDFSset = set ();

st7:　　　for (, supp) in beam do
G st8:　　　　availActionsList= .Actions ();

A ← π (a|st)
k

9:　　　　 Rank actions in availActionsList with
　　　　 and select top- actions;

a A10:　　　　for each action in do
st+1 ← st a11:　　　　　 +[];

← st+112:　　　　　mincode MinDFScode ([1:]);
(rhead, ε ⩽

st+1

13:　　　　　if mincode) not in MinDFSset and
　　　　　　 support() then

st+1 st+114:　　　　　　currentRules.Add ((, support ()));
(rhead,15:　　　　　　MinDFSset.Add (mincode));

Σ ← Σ ∪ {st+1}16:　　　　　　 ;
17:　　　Sort currentRules with support of each rule;
18:　　　beam = currentRules[: beam_width];

Σ19: return

Table 2 Dataset information.

Dataset Number of
entities

Number of
relations

Number of
triples

Kinship 1044 25 5960
FB15k-237 14 541 237 310 116
YAGO3-10 123 182 37 1 089 040

 Zhenzhen Mai et al.: A Reinforcement Learning Approach for Graph Rule Learning 39

on knowledge graphs. In addition, we adopt two RL-
based methods, MINERVA[32] and DacKGR[33], for
comparison. MINERVA and DacKGR are multi-hop
reasoning models on knowledge graphs.

We also implement five embedding-based methods,
including TransE[34], DistMult[35], RotatE[36],
ConvE[37], and ComplEx[38]. These embedding
methods are all relatively classic approaches for
knowledge graph reasoning.

k

k
n

1

Evaluation metrics. To evaluate the graph rules
discovered by our RL agent, we analyze the
performance on the task of link prediction (predicting
the target entity) in the knowledge graph. We adopt
Mean Reciprocal Rank (MRR) and Hit@ as
evaluation metrics, to maintain consistency with
previous works. MRR is the average of the reciprocal
ranks of all the correct triples. Hit@ refers to the
proportion of correct triples ranked in the top . The
probability of each rule is since our method learns
deterministic rules.

Experimental setup of our method. Our algorithm
GraphRulRL involves the use of a representation
learning model and policy network. Specifically, the
representation learning model is primarily used to
obtain the representation of graph rules, which are then
utilized as inputs for the policy network.

Therefore, we implement two different
representation models: (1) LSTM is a single-layer
LSTM model[21], and the final hidden state is set as the
representation for the graph rule; (2) RGCN is a two-
layer RGCN model[22], and the outputs after being

π (a|s; θ)

processed by RGCN and an average pooling layer are
set as the representation of the graph rule. The policy
network contains two fully-connected hidden
layers, each followed by a rectifier non-linear layer.
The output layer is normalized with a softmax function.

lstm gcn

100 k
20 25

Consequently, GraphRulRL is divided into two
versions in terms of two representation models,
GraphRulRL and GraphRulRL . To ensure
consistency, the output dimensions for RGCN and
LSTM are both set to 256. For the RL model, we set
the parameters as follows: the learning rate is 0.0001,
and the dimension of the embedding vector is 512.
During the rule mining procedure, we set the
parameters as follows: the beam_width is , top- is

, and the threshold of support is over all datasets.
GraphRulRL is deployed in PyTorch framework, and

trained on a Linux server powered by Intel Xeon 2.2
GHz and 64 GB memory. All parameters are tuned
with the Adam optimizer. The experiments are
repeated 5 times, and the reported values here are the
averages.

5.2　Results

237

Experiment-1: Comparison against existing
methods. The results are shown in Table 3. Our
method demonstrates excellent performance on FB15k-

, achieving high scores on three metrics. Compared
to other rule-based methods, it gets a higher hit@1 on
YAGO3-10 and hit@10 on Kinship. However the
overall effectiveness is not as good as those of the
embedding-based models on YAGO3-10 and Kinship.

Table 3 Link prediction results on three datasets. Hit@k is in %. “OOM” denotes out of memory for short.

Method Model
Kinship FB15k-237 YAGO3-10

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

Embedding

TransE 0.32 9.0 74.3 0.32 23 51.0 0.36 25.1 58.0
ConvE 0.83 77.0 96.7 0.32 23.7 50.1 0.44 35.4 61.6
RotatE 0.65 50.4 93.2 0.34 24.1 53.3 0.49 40.2 67.0

DistMult 0.35 18.9 75.5 0.24 15.5 41.9 0.34 24.3 53.3
Complex 0.42 24.2 81.2 0.25 15.8 42.8 0.34 24.8 54.9

Rule

NeuralLP 0.62 47.2 91.1 0.24 16.0 39.9 OOM OOM OOM
DRUM 0.58 42.3 90.1 0.25 18.7 37.4 OOM OOM OOM

RNNLogic 0.6 42.9 94.6 0.35 25.8 53.3 OOM OOM OOM
NCRL 0.6 46.3 90.5 0.30 20.9 47.3 0.38 27.4 53.6
Rlogic 0.58 48.6 91.4 0.31 20.3 50.1 0.36 25.2 50.4

RL-based
MINERVA 0.64 48.5 94.1 0.27 19.6 43.5 0.15 10.6 23.7
DacKGR 0.54 43.5 72.8 0.35 29.4 47.5 OOM OOM OOM

Ours lstmGraphRulRL 0.63 46.4 95.6 0.42 32.8 60.1 0.42 35.8 52.0
gcnGraphRulRL 0.63 46.9 95.1 0.43 33.3 60.9 0.40 33.8 50.1

 40 Big Data Mining and Analytics, February 2025, 8(1): 31−44

237
Through analyzing the characteristics of these datasets,
we can find that FB15k- contains more kinds of
edges, allowing the representation models to extract
more effective information from graph rules.

gcn

lstm 237

lstm

237

Additionally, GraphRulRL shows a certain
advantage over GraphRulRL on the FB15k- .
However, GraphRulRL performs slightly better on
the other two datasets. This indicates that the encoding
effectiveness is influenced by the characteristics of the
data graphs, for that FB15k- has more types of edge
relations than the other two, which demonstrates more
diverse structures in the data graph.

5

Experiment-2: Performance with varying sizes of
the bodies of graph rules. We analyze the changes in
the number of graph rules under the different sizes of
the rule body, i.e., the number of edges in the rule
body. As shown in Fig. 3, it is evident that our method
can obtain as many high-quality graph rules as possible
on all three datasets when the support is set to 25. As
the size of the rule body increases, the number of rules
first increases and then decreases. There is a notably
higher quantity of graph rules when the rule body size
is , which suggests that such structures of graph rules
are more common in graphs.

lstm
237

Additionally, we find that GraphRulRL can mine
more graph rules on FB15k- , while there is not
much difference in the number of rules mined by the

two methods on the other two datasets. This illustrates
that this method is significantly influenced by the
datasets.

10 90

120
0.36

lstm

Experiment-3: Performance with varying the
numbers of support. We compared the MRR metrics
on three datasets with different support values varying
from − . As shown in Figs. 4a and 4b, the results
of MRR on FB15k-237 and Kinship show a decreasing
trend within the increasing of support. This indicates
that support, as an evaluation metric of graph rules, has
a significant impact on rule mining. However, there is
no noticeable change YAGO3-10. This is because
YAGO3-10 is large in scale, and the graph rules of
these structures are very common. However, when we
set support to or above on YAGO3-10, we find
that all three metrics decreased to , 32.7%, and
41.6% for MRR, Hit@1, and Hit@10, respectively,
with GraphRulRL (not shown). This indicates that
with the increase of the threshold of support, the
number of matches of graph rules that meet the criteria
decreases. Therefore, setting an appropriate threshold
of support is an issue that needs careful consideration.

lstm

gcn

gcn

Experiment-4: Analysis for representation
models. From the results in Table 3, GraphRulRL
demonstrates relatively superior in performance than
GraphRulRL on Kinship and YAGO3-10, while
GraphRulRL exhibits better performance on FB15k-

0

2000

4000

6000

8000

3 4 5 6 7

R
ul

e
nu

m
be

r

Varying size of rule bodies

GraphRulRLlstm
GraphRulRLgcn

GraphRulRLlstm
GraphRulRLgcn

GraphRulRLlstm
GraphRulRLgcn

5000

10 000

15 000

20 000

3 4 5 6 7

R
ul

e
nu

m
be

r

Varying size of rule bodies

4000

8000

12 000

3 4 5 6 7

R
ul

e
nu

m
be

r

Varying size of rule bodies
(a) Kinship (b) FB15k-237 (c) YAGO3-10

Fig. 3 Distribution of graph rules with different sizes of rule bodies.

0.30

0.35

0.40

0.45

0.50

10 30 50 70 90

M
R

R

Varying support number

0.30

0.35

0.40

0.45

0.50

10 30 50 70 90

M
R

R

Varying support number

0.40

0.45

0.50

0.55

0.60

0.65

0.70

10 30 50 70 90

M
R

R

Varying support number
(a) Kinship (b) FB15k-237 (c) YAGO3-10

Fig. 4 Performance with varying support numbers.

 Zhenzhen Mai et al.: A Reinforcement Learning Approach for Graph Rule Learning 41

gcn

lstm

gcn

237. By scrutinizing the characteristics of these
datasets, We find that FB15k-237 has more kinds of
edge relations, whereas Kinship and YAGO3-10 have
significantly fewer edge relations. Therefore, RGCN
has better performance on graphs with more kinds of
edges. In addition, Fig. 3b shows that GraphRulRL
gets fewer graph rules than GraphRulRL on FB15k-
237, but the results in Table 3 show the superior
performance of GraphRulRL , which also
demonstrates the effectiveness of RGCN on graphs
with more diverse structures.

lstm gcn

lstm

gcn

gcn

lstm

lstm gcn

Figures 3a and 3c show that there is little difference
in the number of generating graph rules between
GraphRulRL and GraphRulRL . And the results
in Table 3 shows that GraphRulRL is relatively
superior in performance than GraphRulRL on
kinship and YAGO3-10. This indicates that LSTM
works well on graphs with less types of edge relations.
Therefore, we suggest to choose GraphRulRL when
there are many types of edges, and choose
GraphRulRL when there is less types of edges. In
fact, both GraphRulRL and GraphRulRL exhibit
good performance in generating graph rules.

ρc y
x z x

z ρd

y
x y

z y′

ρe y
x z x

y y z′

Experiment-5: Case study of generated graph
rules. We present three graph rules mined from
FB15k-237 in Fig. 5. The first rule indicates that if
directs film and wins award , then may be
nominated for award . The second rule indicates
location has characteristics of being a venue for
wedding when location becomes the choice of
marrying travelers during the period . The third rule

 indicates that the educational institution is
contained in place , while student lives in and
receives education from , and uses as a currency
unit for the operating income.

6　Conclusion

This paper introduces a new method for learning graph
rules using a policy network based RL approach,

denoted as GraphRulRL. GraphRulRL adopts DFS
codes to convert graph rules into sequences of ordered
edges. Consequently, it formulates the problem of
graph rule learning into a sequential decision-making
problem that can be solved by RL. GraphRulRL first
trains the policy network of RL for graph rule learning,
and the reward function for the policy network
considers support with anti-monotonicity as evaluating
metrics of graph rules. Then it develops a rule-
generating algorithm that combines the well-trained
policy network with beam search for iterative searching
to generate as many high-quality graph rules as
possible. The experimental results demonstrate that
GraphRulRL has excellent ability in generating high-
quality graph rules, and also exhibits excellent
performance in terms of effectiveness.

However, this study also has some limitations. For
instance, it uses support as the evaluation metric, which
is less sensitive to certain infrequent rules. Exploring
how to effectively combine statistical metrics with
machine learning methods is also a meaningful
direction for further research.

Acknowledgment

This work was supported by the Hainan Tropical Ocean
Institute Yazhou Bay Innovation Research Institute Major
Science (No. 2023GKF-122), the Technology Plan Project
(No. 2023CXYZD001), and the Key Research and
Development Projects in Hainan Province (No.
ZDYF2024SHFZ051).

References

 W. Fan, X. Liu, P. Lu, and C. Tian, Catching numeric
inconsistencies in graphs, in Proc. SIGMOD Conf. 2018,
Houston, TX, USA, 2018, pp. 381–393.

[1]

 W. Fan, Y. Wu, and J. Xu, Functional dependencies for
graphs, in Proc. SIGMOD Conf. 2016, San Francisco, CA,
USA, 2016, pp. 1843–1857.

[2]

 W. Fan and P. Lu, Dependencies for graphs, ACM Trans.
Database Syst. TODS, vol. 44, pp. 1–40, 2019.

[3]

 W. Fan, X. Wang, Y. Wu, and J. Xu, Association rules
with graph patterns, Proc. VLDB Endow., vol. 8, no. 12,

[4]

Locate

Union
Travel
_monthVacation

Ceremony Place

Month yTraveler z

Educate

Contain

Currency unit z

Li
ve

d_
in

Place Educational
institution

Producer

Award

x x
x

y y y
CreatorFilm

Awards z

Nominated

y

Student z

Operate
_income

(a) Mined rule ρc (b) Mined rule ρd (c) Mined rule ρe
Fig. 5 Graph rules minded from FB15k-237.

 42 Big Data Mining and Analytics, February 2025, 8(1): 31−44

pp. 1502–1513, 2015.
 W. Fan, C. Hu, X. Liu, and P. Lu, Discovering graph
functional dependencies, in Proc. SIGMOD Conf. 2018,
Houston, TX, USA, 2018, pp. 427–439.

[5]

 W. Fan, W. Fu, R. Jin, P. Lu, and C. Tian, Discovering
association rules from big graphs, Proc. VLDB Endow.,
vol. 15, no. 7, pp. 1479–1492, 2022.

[6]

 N. Lao, J. Zhu, X. Liu, Y. Liu, and W. W. Cohen,
Efficient relational learning with hidden variable
detection, in Proc. Conf. NIPS 2010, Vancouver, Canada,
2010, pp. 1234–1242.

[7]

 Z. Du, C. Zhou, M. Ding, H. Yang, and J. Tang, Cognitive
knowledge graph reasoning for one–shot relational
learning, arXiv preprint arXiv: 1906.05489, 2019.

[8]

 Zh. Zhu, Z. Zhang, L.-P. A. C. Xhonneux, and J. Tang,
Neural Bellman-Ford networks: A general graph neural
network framework for link prediction, in Proc. Thirty-
Fifth Conference on Neural Information Processing
Systems, Virtual Event, 2021, doi:10.48550/arXiv.2106.
06935.

[9]

 W. W. Cohen, TensorLog: A differentiable deductive
database, arXiv preprint arXiv:1605.06523, 2016.

[10]

 W. Xiong, T. Hoang, and W. Y. Wang, DeepPath: A
reinforcement learning method for knowledge graph
reasoning, in Proc. 2017 Conf. Empirical Methods in
Natural Language Processing, Copenhagen, Denmark,
2017, pp. 564–573.

[11]

 C. Meilicke, M. W. Chekol, M. Fink, and H.
Stuckenschmidt, Reinforced anytime bottom up rule
learning for knowledge graph completion, arXiv preprint
arXiv:2004.04412, 2020.

[12]

 X. Yan and J. Han, gSpan: Graph-based substructure
pattern mining, in Proc. IEEE Int. Conf. Data Mining,
Maebashi City, Japan, pp. 721–724.

[13]

 M. Kuramochi and G. Karypis, Finding frequent patterns
in a large sparse graph, in Proc. 2004 SIAM Int. Conf.
Data Mining, Philadelphia, AR, USA, 2004, pp. 345–356.

[14]

 L. Galárraga, C. Teflioudi, K. Hose, and F. M. Suchanek,
Fast rule mining in ontological knowledge bases with
AMIE+, VLDB J., vol. 24, no. 6, pp. 707–730, 2015.

[15]

 K. K. Teru, E. G. Denis, and W. L. Hamilton, Inductive
relation prediction by subgraph reasoning, in Proc. ICML
2020, Virtual Event, 2020, pp. 9448–9457.

[16]

 F. Yang, Z. Yang, and W. W. Cohen, Differentiable
learning of logical rules for knowledge base reasoning,
arXiv preprint arXiv:1702.08367, 2017.

[17]

 Y. Yang and L. Song, Learn to explain efficiently via
neural logic inductive learning, arXiv preprint arXiv:
1910.02481, 2020.

[18]

 Q. Wang and C. Tang, Deep reinforcement learning for
transportation network combinatorial optimization: A
survey, Knowl. Based Syst., vol. 233, p. 107526, 2021.

[19]

 X. V. Lin, R. Socher, and C. Xiong, Multi-hop knowledge
graph reasoning with reward shaping, in Proc. 2018 Conf.
Empirical Methods in Natural Language Processing.
Brussels, Belgium, 2018, pp. 3243–3253.

[20]

 S. Hochreiter and J. Schmidhuber, Long short-term
memory, Neural Comput., vol. 9, pp. 1735–1780, 1997.

[21]

 M. Schlichtkrull, T. N. Kipf, P. Bloem, R. van den Berg, I.
Titov, and M. Welling, Modeling relational data with
graph convolutional networks, arXiv preprint arXiv:
1703.06103, 2017.

[22]

 X. Liu, H. Pan, M. He, Y. Song, X. Jiang, and L. Shang,[23]

Neural subgraph isomorphism counting, in Proc. 26th
ACM SIGKDD Int. Conf. Knowledge Discovery & Data
Mining, Virtual Event, 2020, pp. 1959 – 1969.
 R. J. Williams, Simple statistical gradient-following
algorithms for connectionist reinforcement learning,
Mach. Learn., vol. 8, no. 3, pp. 229–256, 1992.

[24]

 S. Kok and P. Domingos, Statistical predicate invention, in
Proc. 24th Int. Conf. Machine learning, Corvalis, OR,
USA, 2007, pp. 433–440.

[25]

 K. Toutanova and D. Chen, Observed versus latent
features for knowledge base and text inference, in Proc.
3rd Workshop on Continuous Vector Space Models and
their Compositionality, Beijing, China, 2015, pp. 57–66.

[26]

 F. M. Suchanek, G. Kasneci, and G. Weikum, Yago: A
core of semantic knowledge, in Proc. 16th Int. Conf.
World Wide Web, Banff, Canada, 2007, pp. 697–706.

[27]

 A. Sadeghian, M. Armandpour, P. Ding, and D. Z. Wang,
DRUM: End-to-end differentiable rule mining on
knowledge graphs, in Proc. NIPS 2019, Vancouver,
Canada, 2019, pp. 15321–15331.

[28]

 M. Qu, J. Chen, L. A. C. Xhonneux, Yoshua Bengio, Jian
Tang, RNNlogic: Learning logic rules for reasoning on
knowledge graphs, arXiv preprint arXiv:2010.04029,
2021.

[29]

 K. Cheng, N. K. Ahmed, Y. Sun, Neural compositional
rule learning for knowledge graph reasoning, in Proc.
ICLR2023, Kigali, Rwanda, arXiv preprint arXiv:
2303.03581, 2023.

[30]

 K. Cheng, J. Liu, W. Wang, and Y. Sun, RLogic:
Recursive logical rule learning from knowledge graphs, in
Proc. 28th ACM SIGKDD Conf. Knowledge Discovery
and Data Mining, Washington, DC, USA, 2022, pp.
179–189.

[31]

 R. Das, S. Dhuliawala, M. Zaheer, L. Vilnis, I. Durugkar,
A. Krishnamurthy, A. Smola, and A. McCallum, Go for a
walk and arrive at the answer: Reasoning over paths in
knowledge bases using reinforcement learning, arXiv
preprint arXiv: 1711.05851, 2017.

[32]

 X. Lv, X. Han, L. Hou, J. Li, Z. Liu, W. Zhang, Y. Zhang,
H. Kong, and S. Wu, Dynamic anticipation and
completion for multi-hop reasoning over sparse
knowledge graph, in Proc. 2020 Conf. Empirical Methods
in Natural Language Processing (EMNLP), Virtual Event,
2020, pp. 5694–5703.

[33]

 A. Bordes, N. Usunier, A. García–Durán, J. Weston, and
O. Yakhnenko, Translating embeddings for modeling
multi-relational data, in Proc. NIPS 2013, Lake Tahoe,
Nevada, USA, 2013, pp. 2787–2795.

[34]

 B. Yang, W. T. Yih, X. He, J. Gao, and L. Deng,
Embedding entities and relations for learning and
inference in knowledge bases, arXiv preprint arXiv:
1412.6575, 2015.

[35]

 Z. Sun, Z. Deng, J. Nie, and J. Tang, Rotate: Knowledge
graph embedding by relational rotation in complex space,
arXiv preprint arXiv:1902.10197, 2019.

[36]

 T. Dettmers, P. Minervini, P. Stenetorp, and S. Riedel,
Convolutional 2D knowledge graph embeddings, in Proc.
AAAI Conf. Artif. Intell., New Orleans, LA, USA, pp.
1811–1818.

[37]

 T. Trouillon, J. Welbl, S. Riedel, É. Gaussier, and G.
Bouchard, Complex embeddings for simple link
prediction, arXiv preprint arXiv: 1606.06357, 2016.

[38]

 Zhenzhen Mai et al.: A Reinforcement Learning Approach for Graph Rule Learning 43

Zhenzhen Mai received the MEng degree
in electronics and communications
engineering from Shandong University,
China in 2020. She is currently a PhD
candidate at College of Intelligence and
Computing, Tianjin University, China. Her
research interests mainly focus on big data
computing, data mining, as well as rule

learning and its applications in big data.

Wenjun Wang received the PhD degree
from Peking University, China in 2006. He
is currently a professor at College of
Intelligence and Computing, Tianjin
University, China, the chief expert of
major projects of the National Social
Science Foundation (China), and the
director of the Tianjin Engineering

Research Center of Big Data on Public Security. His research
interests include computational social science, large-scale data
mining, intelligence analysis, and multilayer complex network
modeling.

Xueli Liu received the PhD degree from
Harbin Institute of Technology, China in
2018. She is currently an associate
professor at College of Intelligence and
Computing, Tianjin University, China. Her
research interests include big data
computing, graph association analysis, and
deep learning interpretation.

Xiaoyang Feng received the BEng degree
in software engineering from Zhengzhou
University, China in 2022. He is currently
a master student at College of Intelligence
and Computing, Tianjin University, China.
His research interests mainly focus on rule
learning, knowledge graph reasoning, as
well as data mining and its applications in

big data.

Jun Wang received the MS degree in
fundamental mathematics from Beijing
Institute of Technology, China in 2007.
From 2007 to 2016, he worked at Nankai
University as an experimenter. Currently,
he is engaged at Technical Research &
Development Department, Tianjin
University, China, and a PhD candidate at

College of Intelligence and Computing, Tianjin University,
China. His research interests include pattern recognition, face
recognition, machine learning, and parallel programming.

Wenzhi Fu received the MEng degree in
computer science and technology from
Beihang University, China in 2019. He is
currently a PhD candidate at School of
Informatics, University of Edinburgh, UK.
His research focuses on big data
processing, data mining, data modelling,
and heterogeneous data management.

 44 Big Data Mining and Analytics, February 2025, 8(1): 31−44

