
 

A Reinforcement Learning Approach for Graph Rule Learning

Zhenzhen Mai, Wenjun Wang, Xueli Liu*, Xiaoyang Feng, Jun Wang, and Wenzhi Fu

Abstract: We study the problem of learning rules for graphs. Traditional methods often suffer from large search

spaces  due  to  the  enumeration  of  all  candidate  rules.  Although  some  recent  neural  logic  methods  are  more

efficient in learning rules, they are generally restricted to learning chain-like rules with limited expressiveness.

Taking  the  advantage  of  Reinforcement  Learning  (RL)  in  reducing  search  space,  we  implement  a  policy

network based RL method for learning graph rules, denoted as GraphRulRL. In our research, we convert graph

rules  into  sequences  of  edges,  transforming  the  task  of  graph  rule  learning  into  a  process  of  sequentially

adding edges that  can be solved by RL.  Specifically,  GraphRulRL follows a two-stage framework.  In  the first

stage,  we train a policy network for  graph rule learning,  which evaluates graph rules using support  with anti-

monotonicity as rewards during training. In the second stage, we integrate the well-trained policy network with

beam search for iterative searching to generate graph rules. Experimental results prove the effectiveness of the

proposed method.

Key words:  graph rules; Reinforcement Learning (RL); rule learning

1　Introduction

Q (x, y) ⇒ q (x, y) Q (x, y)
x y

A  variety  of  rules  has  been  studied  for  graphs,  and
implemented  in  various  domains,  including  error
detection[1, 2],  entity  resolution[3],  and  user
recommendation[4]. Rules on graphs usually have more
complex  structures  than  relational  rules.  For  instance,
Graph Pattern Association Rules (GPAR)[4] are defined
as   , where  is a graph pattern
in which  and  represent  two designated nodes,  and

q (x, y) q x y
x y

Q Q (x, y)
q (x, y)

 is an edge labeled  from  to , on which the
search conditions imposed on  and  are the same as
in .  can  be  regarded  as  the  rule  body,  and

 is  the  rule  head  that  is  derived  from  the
conditions in rule body.

To  make  practical  use  of  graph  rules,  many
researches have made significant efforts in discovering
rules  from  real-life  data.  Traditional  methods[4–6]

follow  the  level-wise  search  paradigm  to  mine  graph
rules,  requiring  enumeration  and  verification  of
candidate rules in an exponential space. Although they
typically employ different pruning strategies to reduce
search  space,  the  subgraph  matching  that  is  used  to
evaluate candidates (i.e.,  check whether it  satisfies  the
support  threshold)  still  leads  to  exponential
computational  costs.  With  the  significant
breakthroughs  in  deep  learning,  some  researches[7–10]

have  applied  neural  networks  for  rule  learning  tasks.
For  instance,  path-based  methods[7] enumerate  all
relational paths on a graph as candidate rules, and then
learn  a  weight  for  each  rule  to  evaluate  its  quality.
There  are  also  neural  logic  programming  methods[10]
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that  can  learn  both  rules  and  weights  simultaneously.
However,  these  methods  also  need  to  learn  rules  in  a
large search space and struggle to identify high-quality
rules.  Some  approaches[11, 12] adopt  Reinforcement
Learning  (RL)  to  search  for  rules,  which  can  greatly
reduce the complexity of search space by avoiding bad
decisions  in  early  stage  of  rule  generation.  But  they
mainly  focus  on  learning  chain-like  rules,  which  have
limited expressive ability.

ρa ρa

ρb

However,  mining  graph  rules  from  real-life  data  is
more  challenging  due  to  their  complex  structures.  As
shown in Fig. 1, the edges in the rule body of  (  is
a chain-like rule) naturally has a sequential order, while
the structure of the rule body for graph rule  is more
complex and unordered. Considering the advantages of
RL  in  reducing  search  spaces  and  handling  sequence
decision-making problems, the key issue is how to use
RL method for graph rules learning.

Considering the unordered nature of edges in the rule
body  of  graph  rules,  using  RL for  graph  rule  learning
needs to consider several issues. Firstly, how to convert
graph rules into sequence rules so that the task of graph
rule  learning  can  be  transformed  into  a  sequential
decision-making  process  that  can  be  solved  by  RL?
Secondly,  how  to  evaluate  the  learned  graph  rules?
Finally,  how  to  avoid  generating  redundant  rules
during  the  whole  learning  process?  Here,  redundant
rules  refer  to  those  that  have  the  same  consequence
(i.e., the same rule head) and isomorphic patterns (i.e.,
rule bodies).

For  the  first  issue,  we  consider  adopting  the  Depth-

First Search (DFS) code defined in gSpan[13] to convert
graph  rules  into  ordered  edge  sequences.  To  generate
new rules, the process typically involves starting with a
given rule head and gradually adding edges to the rule
body.  We take each graph rule  as  DFS codes,  and the
new  graph  rule  is  generated  by  extending  the  current
DFS codes with an edge, that is extracted from the data
graph  by  calculating  the  matches  of  the  current  DFS
codes,  and  then  extending  the  matches  with  one-edge
growth  from  nodes  on  the  rightmost  path.  Here  the
right  most  path  denotes  the  path  between  the  nodes
with  the  smallest  and  largest  ids  of  the  current  DFS
codes (i.e., graph rules).

For  the  second  issue,  we  use  the  statistical  metric
support[14, 15] to  evaluate  graph  rules.  Support  usually
refers to the frequency of the rule applied on the graph.
Such  a  definition  of  support  often  lacks  anti-
monotonicity,  which  means  that  as  more  conditions
(i.e.,  edges)  are  added  to  a  rule,  the  frequency  or
significance  of  the  rule  being  satisfied  remains  the
same  or  decreases.  Since  new  rules  are  generated  by
adding new edges to the rule body, the new rules need
to  satisfy  monotonicity.  Therefore,  we  take  support
with anti-monotonicity as the reward of RL to evaluate
graph rules.

For  the  third  issue,  we  intend  to  identify  and  prune
redundant  rules,  which  are  generated  due  to  the
different  orders  of  adding  edges,  by  comparing  the
minimum  DFS  codes  of  rule  bodies  for  graph  rules.
Therefore,  we  can  prune  redundant  rules  by  avoiding
expanding new rules upon them.

With these strategies mentioned above, we propose a
method that can learn graph rules with RL, denoted as
GraphRulRL. Our main contributions include:

(1)  By  transforming  graph  rules  into  ordered
sequences  of  edges,  we  formalize  the  process  of
learning graph rules  into  a  sequential  decision-making
problem that can be solved by RL.

(2)  We  train  a  policy  network  of  RL  for  graph  rule
learning,  in  which  it  designs  a  reward  function  that
takes  support  with  anti-monotonicity  as  evaluation.
Considering  the  anti-monotonicity  of  rules  helps
reduce search space.

(3)  We  embed  the  trained  policy  network  into  the
beam search process, aiming to generate as many high-
quality graph rules as possible.

(4) Validation of the obtained rules are conducted to
demonstrate the effectiveness of the proposed method.
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Fig. 1    Examples of rules and graphs.  is a chain-like rule,
and  is a graph rule. The solid lines in a rule construct the
rule body, and the dashed line represents the rule head.
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The  rest  of  the  paper  is  structured  as  follows.  In
Section  2,  we  introduce  the  related  works.  Some
preliminaries and notations are presented in Section 3.
Section  4  elaborates  on  the  overall  framework  of
GraphRulRL in detail, including the training process of
the  policy  network  and  the  generation  of  graph  rules.
Section  5  reports  the  experimental  results,  and
conclusions are drawn in Section 6.

2　Related Work

Rule  learning. There  have  been  several  methods  for
discovering  rules  from  graphs.  Traditional  approaches
follow  a  level-wise  search  paradigm  for  rule  mining,
which  usually  requires  enumerating  and  validating
rules  in  an  exponential  space.  For  example,  GFDs[5],
GPARs[4],  and  GARs[6] can  mine  graph  rules  by
adopting  different  pruning  strategies  to  improve
efficiency.  Some  recent  researches  apply  neural
networks for rule learning, in which they usually learn
the  weights  of  logic  rules  efficiently  for  quality
evaluation.  PRA[7] samples  paths  by  using  random
walk with restart strategies from the data graph to infer
chain-like  rules.  DeepPath[11] formulates  the  path-
finding  problem  as  a  sequential  decision-making
problem  with  RL.  The  path-based  methods  aim  at
learning  chain-like  rules.  Some  graph-based  methods,
like  GraIL[16] and  CoGraph[8],  extend  the  path-based
methods and allow the interpretation to be structured as
graphs,  thereby  providing  richer  expressiveness.  The
matrix-based methods[10, 17, 18] use matrix operations to
describe  the  logical  relationships  between  entities.
TensorLog[10] and  NeuralLP[17] focus  on  learning
chain-like  rules.  NLIL[18] constructs  a  more  compact
framework  for  rule-learning  by  stacking  three
transformer  networks,  and  can  tackle  the  non-chain-
like rules, which suffers the complexity of models.

In  this  paper,  we  formulate  the  learning  of  graph
rules  into  a  sequential  decision-making  problem  that
can  be  solved  by  RL.  It  is  a  heuristic  method  that
combines  beam  search  with  a  policy  network  to
generate as many high-quality graph rules as possible.

Reinforcement  learning. Some  researchers  apply
reinforcement  learning  for  rule  learning,  benefiting
from its ability to explore and make optimal decisions
in  large  search  spaces.  These  methods[11, 19] typically
model  path-based  approaches  as  sequential  decision-
making  processes  to  learn  chain-like  rules.  However,
the  reward signal  is  very  sparse,  making it  difficult  to
train  an  effective  path-finding  agent.  Some  studies[20]

attempt  to  obtain  better  rewards  by  using  embedding-
based methods for reward shaping. In our research, we
design  a  new  reward  mechanism  to  train  the  network
for  graph  rule  learning,  aiming  to  achieve  better
performance.

3　Preliminary

Θ

In  this  section,  we  review  some  basic  notations.
Assume a countably infinite set  denotes the node and
edge label in graphs.

3.1　Graph rules

G (V, E, L)
V E ⊆ V ×V

(v, v′)
v v′ v ∈ V

L (v) ∈ Θ
e L (e) ∈ Θ

Graphs. We  consider  directed  graphs  =   ,
where (1)  is a finite set of nodes; (2)  is a
set  of  edges,  in  which  denotes  an  edge  from
node  to ;  and  (3)  each  node  is  labeled

,  indicating  its  label  or  content,  e.g.,  scholar
and  college,  and  each  edge  is  labeled ,
indicating its  label  or  content,  e.g., “follow” and “live
in”,  as  found  in  property  graphs,  social  networks,  and
knowledge bases. G0 in Fig.  1c  shows a  simple  social
network.

Q [x̄] = (VQ, EQ, LQ, µ) VQ

EQ

LQ Θ

LQ (u) u ∈ VQ

LQ (e) e ∈ EQ x̄
VQ µ

x̄ VQ

v VQ x ∈ x̄
µ (x) x

Patterns. A  graph  pattern  is  defined  as  a  graph
, where (1)  is a finite set of

pattern  nodes,  and  is  a  finite  set  of  pattern  edges;
(2)  is a function with range in  that assigns a node
label  for  each ,  and  assigns  a  edge  label

 for  each ;  and  (3)  is  a  list  of  distinct
variables,  each  denoting  an  entity  in ;  (4)  is  a
bijective  mapping  from  to ,  i.e.,  it  assigns  a
distinct  variable  to  each  node  in .  For ,  we
use  and  interchangeably when it  is clear in the
context.

ρa

x y z

ρa Q
ρb

Example  1:  In  the  rule  body  of  in Fig.  1,  it
contains three pattern nodes, i.e., , , and , and each
node  has  its  own label.  According  to  the  definition  of
pattern, we can take the rule body of  as a pattern .
Similarly, for the rule body of graph rule .

Q [x̄] G h
Q G′ G

u ∈ VQ LQ (u) = L (h (u)) (u, u′)
Q (h (u), h (u′)

G′ f (u, u′) L (h (u), h (u′) G′

Q

Pattern  matching. We  adopt  the  isomorphism
semantics  of  pattern  matching.  A  match  of  pattern

 in graph  is a bijective function  from nodes of
 to  the  nodes  of  a  subgraph  of ,  such  that  for

each  node , ;  and  is
an  edge  in  if  and  only  if  is  an  edge  in

,  and  = .  We  say  that 
matches .

G′ h (x̄)
h (x) x ∈ x̄ x̄

x̄ h (x̄)

We denote the match  as a vector , consisting
of  for all  in the same order as . Intuitively,

 is  a  list  of  entities  to  be  identified,  and  is  an
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x̄ Ginstantiation of  in , one node for each entity.
Q (G) Q G

u Q (u, G)
u Q (G) Q (u, G)

v G h
G′ ∈ Q (G)

Q v ∈ G′ h (u) v

We denote by  the set of all matches of  in .
For each pattern node , we use  to denote the
set of all  matches of  in ,  i.e.,  consists
of  nodes  in ,  such  that  there  exists  a  function 
under  which  a  subgraph    is  isomorphic  to

,    and  = .

ρa ρb Qa Qb

Qb G0 Qb (G0)
x 7→ u0 x′ 7→ u1 y 7→ w z 7→ v Qb (x, G0)

u0

Example  2:  For  convenience,  we  denote  the  rule
bodies  of  and  in Fig.  1 as  patterns  and ,
respectively.  For  and ,  a  match  in  is

, , ,  and .  Here 
includes .

φ

Q [x̄]→ q (x, y) Q [x̄] φ

q (x, y) q x y x
y x̄ Q q

φ

Q

Q q
φ

Graph  rules. A  graph  rule  is  defined  as
,  where (1)  is  a pattern of ;  and

(2)  is  an  edge  labeled  from  to ,  where 
and  are two designated nodes in . We refer  and 
as  the  rule  body  and  rule  head  of ,  respectively.  In
such  a  definition,  each  pattern  edge  of  can  be
considered  as  a  predicate,  and  all  the  edges  in  the
pattern  form  the  rule  body.  Similarly,  is  a
predicate, serving as the consequence of .

ρa

φa : Qa (x̄) → (x, z)
x z x y
y z

Example 3: For  in Fig. 1, it can be expressed as a
graph  rule    Follow  ,  where  it
indicates  that  works  for  when  and  are
colleagues, and  works for college .

ρb φb : Qb (x̄)
→ (x, x′) x x′

z y x
x′

For , it can be expressed as a graph rule  
 Colleague  . It says that if  and  both work

for  college ,  and they live  in  the  same city ,  then 
and  are colleagues.

φ

Q

h (x̄) Q q (h (x), h (y)) h (x̄)
Q

Compared  to  chain-like  rules,  such  logic  rule 
exhibits  a  higher  level  of  expressive  capability  since
pattern  possesses  more  complex  structures.  By
employing pattern matching algorithm to obtain match

 of , we can deduce  . Match  is
an instantiation of pattern  on the graph.

φ :
Q [x̄]→ q (x, y) G

φ G
φ

Q [x̄]→ q (x, y) G

Support. The  support  of  a  graph  rule 
 in  graph  should  represent  the

frequency  that  can  be  applied  to .  We  adopt  the
definition in Ref. [4], where it defines the support of :

  in graph  as
 

support (φ, G) = ∥Pφ (x, G)∥ (1)

φ Pφ (x ,y)
x y φ

x y Pφ (G) Pφ (G)
Pφ G

where  is  treated as pattern  with designated
nodes  and . It quantifies support of a rule  in terms
of  the  number  of  distinct  matches  of  two  designated
nodes  and  in ,  and  is  the  set  of  all
matches of  in .

φt

One  can  verify  that  this  support  measure  has  anti-
monotonicity.  Specifically,  if  two  rules  =

Q [x̄]→ q (x, y) φt+1 Q [x̄′]→ q (x, y)
q (x, y) φt

φt+1 φt ⪯ φt+1 Q [x̄] ⊑ Q [x̄′]
φt φt+1

(φt, G) ⩾ (φt+1, G)

 and  =  with  the
same consequence ,  we say that  has a  lower
order than , denoted by    if  .
That  is,  is  less  restrictive  than ,  and
support    support  .  The  anti-
monotonicity  requires  that  when  more  conditions  are
added to a rule, the frequency of the rule being satisfied
does not increase but remains the same or decreases.

3.2　DFS codes of graph

(u, v, (lu, le, lv))
u v

lu ∈ Θ lv ∈ Θ
u v le ∈ Θ

u v (lu, le, lv)

DFS codes in gSpan[13] describes a graph in an ordered
sequence  of  edges  by  performing  a  depth-first  search
on  it.  This  sequence  is  composed  of  a  list  of  five-
tuples, i.e., .  Each five-tuple represents
an edge, in which  is the source node id, and  is the
target  node  id,    and    denote  the  vertex
label  of  and ,  respectively,  and    is  the  edge
label  between  and .  We also  denote  as  a
label triplet that many edge instances of the data graph
have been conformed to.

ρa

ρa

(x
y) ρa (0 1

(1 2
(y z)

ρa (0 1
(2 0

Example 4: We take  in Fig. 1 as an example. For
clarity,  we  only  consider  the  rule  body  of ,  i.e.,  the
solid  lines.  If  the  searching  starts  from ,  Colleague,

,  the  DFS  codes  of  contain , ,  (Scholar,
Colleague,  Scholar))  and , ,  (Scholar,  Follow,
College)).  If  it  starts  from ,  Follow, ,  the  DFS
codes  of  contain , ,  (Scholar,  Follow,  College))
and , , (Scholar, Colleague, Scholar)).

G

≺e

A (a0, a1, . . . , am) B (b0, b1, . . . , bn)
A ⩽ B

Different  traversal  orders  of  nodes  and  edges  can
produce multiple DFS codes for a graph . To address
this  issue,  the  author  defined  a  DFS  Lexicographic
Order  to  compare  each  pair  of  DFS  codes.  Suppose
there  is  linear  order  ( )  for  the  lexicographic
combinations of  node ids,  node labels  and edge labels
(please  refer  gSpan[13] for  detailed  definition).  DFS
Lexicographic  Order  is  a  linear  order  defined  as
follows. If  =  and  = 
are  two states,  then  if  either  of  the  following is
true:

∃t, 0 ⩽ t ⩽min (m, n) ∀k < t ak bk at ≺e bt(1) , ,  = ,   ,
∀0 ⩽ k ⩽ m ak bk n ⩾ m(2) ,  = , and .

G

G G′

G G′

Among  all  possible  DFS  codes  of  graph ,  the
minimum  code  is  the  one  with  the  minimum
lexicographical  order  with  the  same  elements.  If  two
graphs  and  have  the  same  minimum
lexicographical  order,  then  is  isomorphic  to .  By
comparing  the  minimum  lexicographical  order,  it  can
effectively  identify  graphs  or  patterns  that  are
isomorphic.
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3.3　Markov decision process for rule learning

In  RL,  the  Markov  Decision  Process  (MDP)  is  an
important  framework  used  to  describe  the  problem  of
an  agent  learning  the  optimal  behavior  policy  by
interacting with an environment.

⟨S, A, P, R⟩
S A {a1, a2, . . . , an}

P (S t+1 = s′| S t s, At

a)
s a s′

R (s, a) (s, a)

In general,  MDP is  modeled as ,  where
 is  a  continuous  state  space,  = 

is a set of all possible actions,     =   =
 is  a  state  transition  function  that  deterministically

maps  the  state  and  action  to  the  next  state .
 is the reward function for each  pair.

ρa x z
x y
x y

→ x z
y z x y

∧ y z → x z

Some  studies[11, 19] adopt  MDP  to  learn  chain-like
rules.  Typically,  it  starts  with  a  given  predicate  as  the
rule head, progressively adding predicates to construct
the  rule  body,  where  predicates  are  edge  labels.  Take

 in Fig. 1 for instance, given the predicate Follow ( , )
as rule head, it first adds the predicate Colleague ( , )
to the rule body, deriving a partial rule Colleague ( , )

 Follow ( , );  then  it  adds  another  predicate
Follow ( , ) to form a complete rule Colleague ( , )

 Follow ( , )  Follow ( , ).  Therefore,  the  whole
process  can  be  modeled  as  a  MDP,  with  a  reward  to
measure the quality of each step.

Chain-like  rules  can  be  seen  as  closed  paths,  and
learning  chain-like  rules  using  RL  methods  is
equivalent  to  the  process  of  finding  closed  paths  in  a
graph.  Additionally,  the  edges  (i.e.,  predicates)  within
the  body  of  a  chain-like  rule  have  a  sequential  order,
meaning  each  newly  added  edge  must  follow  directly
after the previous one.

4

However,  for  graph  rules  with  complex  structures,
the aforementioned process cannot be applied directly.
How to  utilize  MDP to  describe  the  modeling process
of graph rules is a key focus of our research, which will
be elaborated in Section .

4　Methodology

(lu, le, lv)
(0, 1, (lu, le, lv))

Our  goal  is  to  generate  graph  rules  by  sequentially
adding  edges  to  the  rule  body,  starting  with  an  edge
label as the rule head. A graph rule can be converted to
DFS  codes,  and  then  adding  all  possible  edges  to  the
current  DFS  codes  for  expanding  new rules,  in  which
these  edges  can  be  obtained  by  enumerating  all  the
matches of the current DFS codes and then expanding
the  matches  with  one-edge  growth  from  nodes  on  the
rightmost  path  of  matches.  More  specifically,  when
given  a  label  triplet ,  we  encode  it  into

 as  the  rule  head,  upon  which  new
edges added to it are all part of the rule body. Then we

(0, 1, (lu, le, lv))enumerate  the  matches  of  in  the  data
graph and find the possible edges (i.e., actions) that can
be  added  to  it.  With  these  available  edges  (i.e.,
actions), we adopt the policy network of RL to evaluate
the quality of these edges and add a high-value edge to
the rule  body to  form a new rule.  When a  new rule  is
evaluated as effective, it continues expanding upon the
new rule by exploring the data graph for possible edges
and using the RL agent to evaluate these edges. Figure
2 illustrates the framework of our method.

e0 (0 1
e0 G0

(0 2
(0 2

(1 2 (1 2
e1

(1 2

e1 → e0 [e0,e1]

e2 (0 2

e1 ∧ e2 → e0

[e0, e1, e2]

Taking  the  graph  rule  in Fig.  1 for  instance,  we  set
the  pattern  edge  (Scholar,  Colleague,  Scholar)  as  the
rule  head,  denoted  as  = , ,  (Scholar,  Colleague,
Scholar). By exploring the matches of  in , we get
four  possible  expanding  edges,  including , ,
(Scholar,  Follow,  College)), , ,  (Scholar,  LiveIn,
City)), , ,  (Scholar,  Follow,  College)),  and , ,
(Scholar, LiveIn, City)). Then, adding a new edge  =

, ,  (Scholar,  Follow,  College))  to  the  rule  body  if
this edge has a high value by RL agent, it forms a rule

  , and the edge sequence of the rule is . If
this rule is proven to be effective using support, we can
expand  new  edges  upon  it.  After  exploring  the  data
graph,  we  find  that  another  new  edge  = , ,
(Scholar, LiveIn, City)) can be added to the rule body,
forming  a  new  rule     ,  with  an  edge
sequence .  We  can  generate  new  rules  by
adding new edges to the rule body of this rule, as long
as this rule is validated as effective.

It  is  obvious  that  each  graph  rule  is  in  the  form  of
DFS  codes,  which  is  constituted  by  a  sequence  of
multiple five-tuples. We take graph rules as states, and
the  edges  that  can  be  added  to  the  state  are  actions.
Consequently, we formulate the problem of graph rule
learning  as  a  MDP  that  can  be  solved  by  RL  and
propose  an  approach  GraphRulRL  for  graph  rule
learning.  GraphRulRL  consists  of  two  parts:  (1)
training  of  the  policy  network  of  RL,  and  (2)  the  rule
generation guided by the trained policy network. In the
rest of this section, we will describe the components of
the  MDP  in  detail  first.  Then  we  outline  the  training
process of the policy network, and present an algorithm
that  can  generate  graph  rules  with  the  trained  policy
network  subsequently.  The  symbols  used  in
GraphRulRL are shown in Table 1.

4.1　MDP components

Here, we will give the definitions of actions, states, and
rewards  for  the  MDP  components  in  graph  rule
learning, respectively.
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4.1.1　States and actions

(0 2
m (lu, le, lv)
|A| (A2

N −1)×m
N

Action. As  the  mentioned  expansion  process,  each
five-tuple  represents  an  action.  A  five-tuple  specifies
not only the type of the edge but also its position in the
rule, such as , ,  (Scholar, LiveIn, City)). Assuming
there  are  label  triplets  in  the  data  graph,
the  size  of  actions  space  is  if  the
maximum number of nodes of a graph rule is . Due to
the large size of the actions space, we obtain available

G

edges by interacting with the data graph directly when
expanding  for  new  rules  upon  existing  rules.  To
accelerate  the  efficiency  of  searching  possible  edges,
we follow the expansion principle defined in gSpan[13],
which  is  only  to  expand  the  matches  of  current  graph
rule  in  the  data  graph  with  one-edge  growth  from
nodes  in  the  rightmost  path.  The rightmost  path  is  the
path  between  the  nodes  with  the  smallest  and  largest
ids  of  the  current  graph  rule.  This  approach  helps  to
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Available actions
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Fig. 2    Overview of our method, which is based on the framework of RL. It converts the state  (i.e.,  a graph rule) learned
from the environment (i.e., data graph ) into a sequence of edges encoded by DFS codes, and obtains an available actions set

 for  from the environment by getting matches of  in  and expanding matches with one-edge growth on nodes in the
rightmost path. Meanwhile, it transforms state  into a vector using the encoder, and sets state vector  as input of policy
network  by  concatenating  and .  The  policy  network  outputs  distributions  of  all  actions,  and  then  the  values  of
available  actions  can  be  obtained.  During  the  training  phase,  an  action  is  randomly  chosen  from .  In  the
generation phase of graph rules, top-  actions are selected from the sorted probabilities of .
 

Table 1    Specifications for symbols used in GraphRulRL.
Notation Type Description

at tuple (u, v, (lv, le, lv))A five tuple  that represents an action (i.e., edge)
st list A list of five tuples that represents a state (i.e., a graph rule)

rhead tuple st [0] stThe first tuple  of  represents the rule head
R (st, at) float at st tA return value evaluated by the environment (i.e., data graph) when an action  is taken at state  at step 
support float GA statistical measure that counts the frequency of a graph rule applied to graph 
vecst vector stVector representation of state 
vecrhead vector rhead st [0]Vector representation for the rule head  (i.e., )

E set GSet of all frequent label triplets in the data graph 

Mpos Mneg and set Sets of positive samples and negative samples, respectively
MinDFSset set Set of minimum DFS codes of patterns for the graph rules
max_step float A number that limits the size of graph rules, i.e., the number of edges that can be added to the rule body

availActionlist set G stA set of all possible edges explored from data graph  that can be added to current state 
beam_width float A number that controls the size of beams in each iteration.
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reduce  search  space,  facilitating  the  construction  of
graph rules quickly and efficiently.

st

[e0, e1 e2]

st

State. Each  state  is  essentially  a  graph  rule,  as
well  as  DFS  codes  constituted  by  a  list  of  edges.  As
mentioned  above,  the  edge  sequence  ,  is  a
state,  in  which  the  first  element  in  the  edge  sequence
represents the rule head and the rest are the rule body.
Since each element within an edge sequence is discrete,
the graph rule  cannot  be directly  used as  input  for  the
policy  network.  To  address  this  issue,  we  employ
representation  learning  techniques  for  modeling  graph
rules. Given that a graph rule is a sequence of edges, it
can  be  modeled  by  Long  Short-Term  Memory
(LSTM)[21] network.  Simultaneously,  as  the  sequence
of  edges  also  can  be  regarded  as  a  pattern,  Relational
Graph  Convolutional  Networks  (RGCN)[22] can  be
considered for modeling graph rules as well. Therefore,
we  will  describe  how  these  two  models  encode 
respectively.

(1) Encoding with LSTM
st

V X Y

B B
d ∈ {0, 1, . . . ,B−1}

de

(B · (2· ⌈logB (Max (|V |))⌉ + 2 · ⌈logB (Max (|X|))⌉ +
⌈logB (Max (|Y |))⌉))

st

length (st) × de length (st)

Since  state  is  composed  of  a  sequence  of  five-
tuples,  it  is  necessary to convert  each five-tuple into a
vector.  We  follow  the  sequence  encoding  method  in
Ref. [23]. Assuming the maximum values for node ids,
node  labels,  and  edge  labels  are , ,  and  in  the
dataset,  respectively,  it  converts  each  node  id,  node
label, and edge label into -nary digits, where  is the
base,  and  each  digit  .  Then,  it
represents each digit as a one-hot vector, allowing each
id  or  label  to  be  vectorized  as  a  multi-hot  vector,  i.e.,
the  concatenation  of  these  one-hot  vectors.
Additionally,  these  five  multi-hot  vectors  can  be
concatenated  to  represent  a  five-tuple.  The  length

 of  the  multi-hot  vector  for  a  five-tuple  is
    

.  After  obtaining  the  multi-hot
vector  for  each  five-tuple  in  the  state ,  the  state  can
be encoded into a multi-hot matrix, in which the size of
the  matrix  is  (   ),  and  is  the
number of five-tuples in the state.

st

vecst

Based on the above encoding method, we can simply
convert  state  into  a  multi-hot  matrix.  Then,  the
multi-hot  matrix  is  fed  into  an  LSTM,  and  the  final
hidden state is taken as the representation of the entire
rule, denoted as .

(2) Encoding with RGCN
st

st

Since  state  can  be  taken  as  a  graph,  we  also  use
RGCN to  encode .  In  a  graph  model,  each  vertex  is
associated  with  a  feature  vector,  and  each  edge  is

st

vecst st

utilized  to  transmit  information  from its  source  vertex
to its  target  vertex.  Following the encoding method of
the  five-tuples  mentioned  above,  we  vectorize  vertex
labels into multi-hot vectors, serving as vertex features.
RGCN  designs  a  dedicated  transformation  matrix  for
each relation, enabling the network to learn and reason
about different types of relationships. After processing

 with RGCN to obtain aggregated representations for
each  node,  an  average  pooling  is  applied  to  generate
the final representation  for .
4.1.2　Rewards

at

st R (st at)
at

st

st+1 st st+1

st+1

st

st+1

at st

In general, rewards refer to the feedback or return that
an agent receives after performing a certain action  at
state  with  RL,  denoted  as , .  During  the
process  of  expanding  graph  rules,  an  action  is
executed at the current state  to generate a new state

.  Therefore,  both  and  are  graph  rules  and
share  the  same  rule  head,  and  is  extended  by
adding  a  new  edge  to .  However,  it  is  necessary  to
assess  the  effectiveness  of ,  that  is,  whether  a
positive reward can be obtained when choosing action

 at state .
st st+1 φt

φt+1 φt Q [x̄]→ q (x, y) φt+1

Q [x̄′]→ q (x, y) φt ⪯
φt+1 q (x, y)
Qt [x̄] ⊑ Q [x̄′]

(φt, G) ⩾
(φt+1, G)

Suppose  that  and  are  equivalent  to  and
, respectively. Let  =  and  =

.  Consequently,  we  can  find  that  
 since they have the same consequence  and

  .  According to the definition of support
in  Section  3.1,  it  has  support   
support  .

st+1

st+1

In this case, we evaluate  with support. It returns
reward  depending  on  the  evaluation  results  of .
Therefore, we set the following reward function:
 

R (st, at) =
−1, otherwise;

1, if support (st+1, G) is valid
(2)

tFor  each  successful  expansion  step ,  a  positive
reward is given.

4.2　Agent training

We train  the  RL  agent  directly  through  trial-and-error
results with rewards. This section will elaborate on the
training details of the RL agent, including the model of
policy  network,  and  the  procedure  of  training  policy
with rewards.
4.2.1　Policy network

st

st

Since  state  is  a  sequence  of  edges,  we  adopt  the
method mentioned in Section 4.1.1 to encode .

vecst st

t
After  obtaining  the  representation  of ,  the

state vector at step  is given as follows:
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svt = (vecst , vecrhead ) (3)

vecst st

vecrhead
vecst vecrhead
st

svt st

rhead

where  is  the  representation  of  encodes  by
LSTM  or  RGCN,  and  is  the  representation  of
the  rule  head.  In  the  initial  state,  = .  It  is
important  to  note  that  the  state  does  not  include
specific  entities  from  the  data  graph;  it  only  involves
the labels of  entities and edges.  Representing the state
vector  by concatenating the representation of  and
rule  head  is  beneficial  for  capturing  semantic
information between rules.

π(a|s;θ)
vecst

Then we employ a fully connected neural network to
parameterize  the  policy  function ,  which  maps
the state vector  to the probability distribution over
all possible actions. The neural network comprises two
hidden layers, each followed by a Rectified Linear Unit
(ReLU)  layer.  The  output  layer  utilizes  the  softmax
function for normalization.
4.2.2　Training with rewards

π (a|s; θ)

θ

t θ

Our goal is to learn a policy  that enables us to
generate  high-quality  graph  rules  under  its  guidance,
where  is  the learned parameters.  By maximizing the
expected cumulative rewards from any given time step
, the target function of  is

 

J (θ) =Ea∼π (a|s; θ)(
∑

t

R (st, at)) =∑
t

∑
a ∈ A
π (a|s; θ)R (st, at) (4)

π (a|s; θ)
Using  the  Monte-Carlo  Policy  Gradient[24] to

optimize ,
 

∆

θJ (θ) =

∆

θ

∑
t

logπ (a = at |st; θ)Rtotal (5)

Rtotal twhere  is the cumulative reward at time step .
θ

G
st

st G

st+1

To  update  the  parameters ,  we  train  the  policy
network with Algorithm 1. All the parameters are listed
in Table  1.  The  procedure .Action  extracts  possible
actions that  can be added to  the state  from the data
graph  by  getting  matches  of  state  in  and
expanding the matches with one-edge growth on nodes
in the rightmost path. And the procedure MinDFScode
calculates  the  minimum  DFS  codes  of  the  bodies  for
the state .

(lu, le, lv) rhead

7 18
t

st+1

Specifically,  taking  a  randomly  given  label  triplet
 as the rule head , new rules are generated

through the sequential expansion of actions (i.e., edges)
(Lines − ),  where  each  iteration  of  the  expanding
process  is  regarded  as  an  episode.  At  each  step ,  it
builds  a  new  rule  upon  the  previously  obtained

st at

at

st at

Mpos
Mneg

st at

Rtotal

rule  with action , until reaching the max_step. The
action  is  randomly  selected  from  availActionslist
(Line  8)  which extracts  possible  actions  from the  data
graph  with  the  rightmost  expansion  principle  in
Ref. [13]. To ensure the validity of new rules, it needs
to  evaluate  the  rules  with  support  (Line  13).  We  also
maintain a set MinDFSset to collect the minimum DFS
codes  of  the  patterns  for  the  effective  rules.  Here
minimum DFS codes  is  used to  prune redundant  rules
during training. Then a positive sample ( , ) is added
into  and  a  positive  reward  is  given  if  the
conditions are satisfied (Lines 13−15); otherwise, 
gets a negative sample ( , ) (Line 17), and the graph
rule  remains  in  its  state  before  expansion.  Expansion
stops  if  the  current  expansion  step  reaches  max_step.
At  the  end  of  each  episode,  we  update  the  policy
network  using  Eq.  (5)  with  positive  and  negative
samples obtained, and  are defined as follows:

 

Algorithm 1　Training with reward functions
εInput: Data graph G, max_step and 
πθOutput: Learned policy parameters 

θ ←1:   init_parameters ( ); MinDFSset = ( );
←2: E Collect all frequent label triplets in G;

← 1 N3: for episode   to  do

Mpos ← ∅ Mneg ← ∅4:　　   ;   ;
rhead← E5:　　  .random ( );

← rhead)　　    supp support ( ;
st ← rhead6:　　   ;

← 0   　　num_step  ;
<7:　　while num_step  max_step do

st8:　　　availActionslist = G.Actions ( );
a ←9:　　　   random.choice (availActionslist);
st+1 ← st a10:　         + [ ];

← st+1   　       mincode  MinDFScode ( [1:]);
(rhead,11:　      if  mincode) in MinDFSset then

12:　　　　Continue;
(rhead, ε ⩽

st+1

13:　   　els if  mincode) not in MinDFSset and  
　　　　support ( ) then

← st+114:　　　　supp  support ( );

Mpos st a     　　　　 .Add ( , );
st ← st+115:　　　　   ;

rhead,     　　　　MinDFSset.Add ((  mincode));
16:　　　else

Mneg st a17:　　　　 .Add ( , ); // The step fails
18:　　　Increment num_step;

θ Mneg19:　　Update  with ; // penalize failed steps
θ Mpos20:　　Update  with ;

πθ21: return 
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Rtotal =

{
−1, if Mneg , ∅;
length (Mpos), if Mpos , ∅

(6)

Rtotal

θ

L2

where  is the total reward obtained in an episode.
In  practice,  is  updated  using  the  Adam  optimizer,
with  regularization applied.

4.3　Generating graph rules

π (a|s; θ)

π (a|s; θ)

π (a|s; θ)

Since the goal for the rule learning tasks is to discover
as  many  high-quality  rules  as  possible,  it  is  inevitable
to explore the entire rule search space. We employ the
well-trained policy network  to guide the rule
search  procedure  to  find  high-quality  graph  rules
efficiently  by  avoiding  bad  decisions  at  an  early  state
of graph rule generation. The policy network 
can generate a probability distribution over all possible
actions  when  given  a  state,  enabling  the  guidance  of
the  search  process  by  selecting  a  few  certain  actions
with  higher  probabilities.  Algorithm  2  describes  the
process  for  high-quality  rules  by  combining 
with beam search.

G π (a|s; θ)
The algorithm takes the environment (i.e., data graph
)  and  the  well-trained  policy  network  as

Σ

1

st

G 8
π (a|s; θ)

k
9

Σ

Σ

input,  and  outputs  a  set  of  graph  rules  obtained
through  the  iterative  process.  We  first  identify  all  the
frequent  label  triplets  in  the  graph  (Line ),  and  find
corresponding  rules  that  take  each  label  triplet  as  rule
head  with  beam  search  by  iterative  deepening  (Lines
2−18).  During  each  expanding  process,  we  obtain
available  actions  for  the  current  state  through
interacting with the data graoh  (Line ), then use the
policy network  to evaluate these actions, and
select  the  top-  actions  with  the  highest  probabilities
for  expansion  (Line ).  Consequently,  it  generates  a
sequence  of  graph  rules  that  have  the  same  rule  head
and number  of  edges,  but  different  patterns.  Then,  we
filter out rules that have the same minimum DFS codes
in  patterns  and  add  high-quality  rules  into  by
evaluating  them  with  support  (Lines  13−16).  In  this
case, the list  currentRules contains all  the high-quality
graph rules at the current expanding step. Then, it sorts
rules  in  currentRules  by  their  support  values  and
selects  beam_width  rules  for  the  next  expansion  step.
The  process  is  repeated  until  it  reaches  max_step.  All
the graph rules are included in .

2With  Algorithm ,  we  can  generate  as  many  high-
quality  graph  rules  as  possible.  The  use  of  the  policy
network  effectively  reduces  the  search  space,  and
redundant  rules  can  be  pruned  by  checking  the
minimum DFS codes of graph rules.

5　Experimental Study

In  this  section,  we  evaluate  the  effectiveness  of  the
proposed method.

5.1　Experimental settings

Datasets. We  conduct  evaluations  on  three  datasets,
including  Kinship[25],  FB15k-237[26],  and  YAGO3-
10[27]. Table  2 provides  the  statistical  information  of
the datasets.

Compared  algorithms. In  our  experiments,  we
compare  five  neural-based  rule  learning  methods,
including  NeuralLP[17],  Drum[28],  RNNLogic[29],
NCRL[30],  and  Rlogic[31].  These  methods  focus  on
learning chain-like rules, and can be used for reasoning

 

Algorithm 2　Rule generating with policy network
G πθ ε kInput: Data graph , , , max_step, beam_width, and top-

ΣOutput: Set  of graph rules
Σ ← ∅1:   ;

E ← G     collect all frequent label triplets in ;
e ∈ E2: for each label triplet    do

rhead ← e3:　　   set  as a rule head;
rhead rhead4:　　supp = support ( ); beam = [( , supp)];

i5:　　for  in range(max_step) do
6:　　　currentRules=list ( );
  　　　 MinDFSset = set ( );

st7:　　　for ( , supp) in beam do
G st8:　　　　availActionsList= .Actions ( );

A ← π (a|st)
k

9:　　　　   Rank actions in availActionsList with 
　　　　    and select top-  actions;

a A10:　　　　for each action  in  do
st+1 ← st a11:　　　　　   +[ ];

← st+112:　　　　　mincode  MinDFScode ( [1:]);
(rhead, ε ⩽

st+1

13:　　　　　if  mincode)  not  in  MinDFSset  and  
　　　　　　 support( ) then

st+1 st+114:　　　　　　currentRules.Add (( , support ( )));
(rhead,15:　　　　　　MinDFSset.Add (  mincode));

Σ ← Σ ∪ {st+1}16:　　　　　　     ;
17:　　　Sort currentRules with support of each rule;
18:　　　beam = currentRules[: beam_width];

Σ19: return 

 

Table 2    Dataset information.

Dataset Number of
entities

Number of
relations

Number of
triples

Kinship 1044 25 5960
FB15k-237 14 541 237 310 116
YAGO3-10 123 182 37 1 089 040
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on  knowledge  graphs.  In  addition,  we  adopt  two  RL-
based  methods,  MINERVA[32] and  DacKGR[33],  for
comparison.  MINERVA  and  DacKGR  are  multi-hop
reasoning models on knowledge graphs.

We  also  implement  five  embedding-based  methods,
including  TransE[34],  DistMult[35],  RotatE[36],
ConvE[37],  and  ComplEx[38].  These  embedding
methods  are  all  relatively  classic  approaches  for
knowledge graph reasoning.

k

k
n

1

Evaluation  metrics. To  evaluate  the  graph  rules
discovered  by  our  RL  agent,  we  analyze  the
performance  on  the  task  of  link  prediction  (predicting
the  target  entity)  in  the  knowledge  graph.  We  adopt
Mean  Reciprocal  Rank  (MRR)  and  Hit@  as
evaluation  metrics,  to  maintain  consistency  with
previous  works.  MRR is  the  average  of  the  reciprocal
ranks  of  all  the  correct  triples.  Hit@  refers  to  the
proportion  of  correct  triples  ranked  in  the  top .  The
probability  of  each  rule  is  since  our  method  learns
deterministic rules.

Experimental  setup of  our method. Our  algorithm
GraphRulRL  involves  the  use  of  a  representation
learning  model  and  policy  network.  Specifically,  the
representation  learning  model  is  primarily  used  to
obtain the representation of graph rules, which are then
utilized as inputs for the policy network.

Therefore,  we  implement  two  different
representation  models:  (1)  LSTM  is  a  single-layer
LSTM model[21], and the final hidden state is set as the
representation  for  the  graph  rule;  (2)  RGCN is  a  two-
layer  RGCN  model[22],  and  the  outputs  after  being

π (a|s; θ)

processed by RGCN and an average pooling layer  are
set  as  the  representation  of  the  graph  rule.  The  policy
network  contains two fully-connected hidden
layers,  each  followed  by  a  rectifier  non-linear  layer.
The output layer is normalized with a softmax function.

lstm gcn

100 k
20 25

Consequently,  GraphRulRL  is  divided  into  two
versions  in  terms  of  two  representation  models,
GraphRulRL  and  GraphRulRL .  To  ensure
consistency,  the  output  dimensions  for  RGCN  and
LSTM are  both  set  to  256.  For  the  RL  model,  we  set
the  parameters  as  follows:  the  learning  rate  is  0.0001,
and  the  dimension  of  the  embedding  vector  is  512.
During  the  rule  mining  procedure,  we  set  the
parameters as follows: the beam_width is , top-  is

, and the threshold of support is  over all datasets.
GraphRulRL is deployed in PyTorch framework, and

trained  on  a  Linux  server  powered  by  Intel  Xeon  2.2
GHz  and  64  GB  memory.  All  parameters  are  tuned
with  the  Adam  optimizer.  The  experiments  are
repeated  5  times,  and  the  reported  values  here  are  the
averages.

5.2　Results

237

Experiment-1:  Comparison  against  existing
methods. The  results  are  shown  in Table  3.  Our
method demonstrates excellent performance on FB15k-

, achieving high scores on three metrics. Compared
to other rule-based methods, it  gets a higher hit@1 on
YAGO3-10  and  hit@10  on  Kinship.  However  the
overall  effectiveness  is  not  as  good  as  those  of  the
embedding-based  models  on  YAGO3-10 and  Kinship.

 

Table 3    Link prediction results on three datasets. Hit@k is in %. “OOM” denotes out of memory for short.

Method Model
Kinship FB15k-237 YAGO3-10

MRR Hit@1 Hit@10 MRR Hit@1 Hit@10 MRR Hit@1 Hit@10

Embedding

TransE 0.32 9.0 74.3 0.32 23 51.0 0.36 25.1 58.0
ConvE 0.83 77.0 96.7 0.32 23.7 50.1 0.44 35.4 61.6
RotatE 0.65 50.4 93.2 0.34 24.1 53.3 0.49 40.2 67.0

DistMult 0.35 18.9 75.5 0.24 15.5 41.9 0.34 24.3 53.3
Complex 0.42 24.2 81.2 0.25 15.8 42.8 0.34 24.8 54.9

Rule

NeuralLP 0.62 47.2 91.1 0.24 16.0 39.9 OOM OOM OOM
DRUM 0.58 42.3 90.1 0.25 18.7 37.4 OOM OOM OOM

RNNLogic 0.6 42.9 94.6 0.35 25.8 53.3 OOM OOM OOM
NCRL 0.6 46.3 90.5 0.30 20.9 47.3 0.38 27.4 53.6
Rlogic 0.58 48.6 91.4 0.31 20.3 50.1 0.36 25.2 50.4

RL-based
MINERVA 0.64 48.5 94.1 0.27 19.6 43.5 0.15 10.6 23.7
DacKGR 0.54 43.5 72.8 0.35 29.4 47.5 OOM OOM OOM

Ours lstmGraphRulRL 0.63 46.4 95.6 0.42 32.8 60.1 0.42 35.8 52.0
gcnGraphRulRL 0.63 46.9 95.1 0.43 33.3 60.9 0.40 33.8 50.1

    40 Big Data Mining and Analytics, February 2025, 8(1): 31−44

 



237
Through analyzing the characteristics of these datasets,
we  can  find  that  FB15k-  contains  more  kinds  of
edges,  allowing  the  representation  models  to  extract
more effective information from graph rules.

gcn

lstm 237

lstm

237

Additionally,  GraphRulRL  shows  a  certain
advantage  over  GraphRulRL  on  the  FB15k- .
However,  GraphRulRL  performs  slightly  better  on
the other two datasets. This indicates that the encoding
effectiveness is influenced by the characteristics of the
data graphs, for that FB15k-  has more types of edge
relations than the other two, which demonstrates more
diverse structures in the data graph.

5

Experiment-2:  Performance with varying sizes  of
the bodies of graph rules. We analyze the changes in
the  number  of  graph  rules  under  the  different  sizes  of
the  rule  body,  i.e.,  the  number  of  edges  in  the  rule
body. As shown in Fig. 3, it is evident that our method
can obtain as many high-quality graph rules as possible
on all  three datasets  when the support  is  set  to  25.  As
the size of the rule body increases, the number of rules
first  increases  and  then  decreases.  There  is  a  notably
higher quantity of graph rules when the rule body size
is , which suggests that such structures of graph rules
are more common in graphs.

lstm
237

Additionally, we find that GraphRulRL  can mine
more  graph  rules  on  FB15k- ,  while  there  is  not
much  difference  in  the  number  of  rules  mined  by  the

two methods on the other two datasets. This illustrates
that  this  method  is  significantly  influenced  by  the
datasets.

10 90

120
0.36

lstm

Experiment-3:  Performance  with  varying  the
numbers of  support. We compared the MRR metrics
on three datasets with different support values varying
from − .  As shown in Figs.  4a  and 4b,  the  results
of MRR on FB15k-237 and Kinship show a decreasing
trend  within  the  increasing  of  support.  This  indicates
that support, as an evaluation metric of graph rules, has
a significant impact on rule mining. However,  there is
no  noticeable  change  YAGO3-10.  This  is  because
YAGO3-10  is  large  in  scale,  and  the  graph  rules  of
these structures are very common. However,  when we
set  support  to  or  above  on  YAGO3-10,  we  find
that  all  three  metrics  decreased  to ,  32.7%,  and
41.6% for  MRR,  Hit@1,  and  Hit@10,  respectively,
with  GraphRulRL  (not  shown).  This  indicates  that
with  the  increase  of  the  threshold  of  support,  the
number of matches of graph rules that meet the criteria
decreases.  Therefore,  setting  an  appropriate  threshold
of support is an issue that needs careful consideration.

lstm

gcn

gcn

Experiment-4:  Analysis  for  representation
models. From  the  results  in Table  3,  GraphRulRL
demonstrates  relatively  superior  in  performance  than
GraphRulRL  on  Kinship  and  YAGO3-10,  while
GraphRulRL  exhibits better performance on FB15k-
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Fig. 3    Distribution of graph rules with different sizes of rule bodies.
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Fig. 4    Performance with varying support numbers.
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237.  By  scrutinizing  the  characteristics  of  these
datasets,  We  find  that  FB15k-237  has  more  kinds  of
edge  relations,  whereas  Kinship  and  YAGO3-10  have
significantly  fewer  edge  relations.  Therefore,  RGCN
has  better  performance  on  graphs  with  more  kinds  of
edges.  In  addition, Fig.  3b shows that  GraphRulRL
gets fewer graph rules than GraphRulRL  on FB15k-
237,  but  the  results  in Table  3 show  the  superior
performance  of  GraphRulRL ,  which  also
demonstrates  the  effectiveness  of  RGCN  on  graphs
with more diverse structures.

lstm gcn

lstm

gcn

gcn

lstm

lstm gcn

Figures 3a and 3c show that there is little difference
in  the  number  of  generating  graph  rules  between
GraphRulRL  and  GraphRulRL .  And  the  results
in Table  3 shows  that  GraphRulRL  is  relatively
superior  in  performance  than  GraphRulRL  on
kinship  and  YAGO3-10.  This  indicates  that  LSTM
works well on graphs with less types of edge relations.
Therefore, we suggest to choose GraphRulRL  when
there  are  many  types  of  edges,  and  choose
GraphRulRL  when  there  is  less  types  of  edges.  In
fact, both GraphRulRL  and GraphRulRL  exhibit
good performance in generating graph rules.

ρc y
x z x

z ρd

y
x y

z y′

ρe y
x z x

y y z′

Experiment-5:  Case  study  of  generated  graph
rules. We  present  three  graph  rules  mined  from
FB15k-237 in Fig. 5. The first rule  indicates that if 
directs  film  and  wins  award ,  then  may  be
nominated  for  award .  The  second  rule  indicates
location  has  characteristics  of  being  a  venue  for
wedding  when  location  becomes  the  choice  of
marrying travelers  during the period . The third rule

 indicates  that  the  educational  institution  is
contained  in  place ,  while  student  lives  in  and
receives education from , and  uses  as a currency
unit for the operating income.

6　Conclusion

This paper introduces a new method for learning graph
rules  using  a  policy  network  based  RL  approach,

denoted  as  GraphRulRL.  GraphRulRL  adopts  DFS
codes to convert graph rules into sequences of ordered
edges.  Consequently,  it  formulates  the  problem  of
graph  rule  learning  into  a  sequential  decision-making
problem  that  can  be  solved  by  RL.  GraphRulRL  first
trains the policy network of RL for graph rule learning,
and  the  reward  function  for  the  policy  network
considers support with anti-monotonicity as evaluating
metrics  of  graph  rules.  Then  it  develops  a  rule-
generating  algorithm  that  combines  the  well-trained
policy network with beam search for iterative searching
to  generate  as  many  high-quality  graph  rules  as
possible.  The  experimental  results  demonstrate  that
GraphRulRL  has  excellent  ability  in  generating  high-
quality  graph  rules,  and  also  exhibits  excellent
performance in terms of effectiveness.

However,  this  study  also  has  some  limitations.  For
instance, it uses support as the evaluation metric, which
is  less  sensitive  to  certain  infrequent  rules.  Exploring
how  to  effectively  combine  statistical  metrics  with
machine  learning  methods  is  also  a  meaningful
direction for further research.
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